User Tools

Site Tools


laws:hmic

This is an old revision of the document!


HMIC

Description

2D hydraulic microscopic law for solid elements.
Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).

The model

This law replaces the macroscopic fluid law, by considering a complete hydraulic microstructure, made of dominant horizontal bedding planes, vertical bridging planes and matrix blocks. Under the assumption of the spatial repeticion of the microstructure over the distance $w$, a Representative Element Volume (REV) is built, including fractures and tubes whose behaviours are governed by constitutive laws. Fluid pressures and fluxes are computed at the microscopic scale in that hydraulic network. This way, the law is used for water seepage, air seepage, diffusion and advection (coupled) under non-linear analysis in 2D porous media. Effects of mechanics on the flow are implicitely integrated into the microscale model by means of hydro-mechanical couplings.

Mass balance equation for water

\[ \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquid water}} = 0 \]

Liquid water flow

From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube: \[ \vec{q_l} = - \frac{k_{r_w}}{\mu_w}\frac{1}{A}\kappa\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\] where
\[ \kappa = {} \begin{cases} -\frac{h_b^2}{12}h_b \cdot w, fracture\\ -\pi \frac{D^4}{128}, tube\\ \end{cases} \] \[ k_{r_w} = \begin{cases} \frac{S_{r}^{*^2}}{2}(3-S_{r}^{*}), fracture\\ S_{r}^{*^2}, tube \end{cases} \]

Liquid state equations

  1. Density $\rho_w$: \[\rho_w (T, p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w} \right]\]
  2. Intrinsic permeability $k_w$:
    Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ avec $k_{w,eff} = k_f k_{r,w}$
  3. Saturation degree $S_w$:
    Depending on succion $s = p_a - p_w : S_w = f(s)$

Mass balance equation for air

\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]

Dry air flow

From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube: \[ \vec{q_g} = - \frac{k_{r_g}}{\mu_g}\frac{1}{A}\kappa\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y)\right]\] where
\[ \kappa = {} \begin{cases} -\frac{h_b^2}{12}h_b \cdot w, fracture\\ -\pi \frac{D^4}{128}, tube\\ \end{cases} \] \[ k_{r_g} = \begin{cases} (1-S_{r}^*)^3, fracture\\ (1-S_{r}^*)^2, tube \end{cases} \]

From Fick's law, the diffusive component of the dissolved air flow respectively reads for a fracture and a tube: \[ \vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} (\omega_a) \]

where $\omega_a = \rho_a/\rho_g$.

Dry gas state equations

  1. Density $\rho_a$ :
    Assumption of classical ideal gas equation of state: \[\rho_a (T, p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}}\frac{T_0}{T} \]
  2. Perméabilité intrinsèque $k_g$:
    Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ avec $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$
  3. Gaseous saturation degree $S_g$:
    Depending on suction $s = p_g - p_w$
    $S_g = 1-S_w$

Files

Prepro: LHMIC.F & EHMICA.F
Lagamine: HMIC.F & EHMICB.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 629
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (3I10,2G10.0)
NLAWFEM2Number of constitutive laws at the subscale
KFLUNumber of DOF: 1=Pw, 2=Pw+C, 3=Pw+Pg, 4=Pw+C+Pg with C the concentration in pollutant
MITERMaximum number of iterations at the subscale
CNORMNorm for the solver of the subscale
FACONVUnits of conversion of the RVE (it has a size of 1[-])

Real parameters

Line 1 (3E10.2,2G10.0)
VISCW0Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$
RHOW0Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$
UXHIWLiquid compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$
PW0Initial water pressure $\left[ Pa\right]$
T0Initial temperature $\left[ K\right]$
Line 2 (1G10.0)
CPINIInitial pollutant concentration $\left[ -\right]$
Line 3 (3E10.2,2G10.0)
VISCA0Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$
RHOA0Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$
PMGASGas molar mass $[g/mol]$
PA0Initial gas pressure $\left[ Pa\right]$
PHENRYHenry coefficient
Line 4 (1I10)
IVAP= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)
Line 5 (3I10)
ISRRetention curve (=53 for Van Genuchten with hysteresis)
IKWWater relative permeability curve (=7 for Van Genuchten)
IKAGas relative permeability curve (=6 for Van Genuchten)
Line 6 (3G10.0)
CKW1First parameter of IKW
CKW2Second paremeter of IKW
CKW3Third parameter of IKW
Line 7 (2G10.0)
CKA1First parameter of IKA
CKA2Second parameter of IKA
Line 8 (5G10.0)
CSR1First parameter of ISR
CSR2Second parameter of ISR
CSR3Third parameter of ISR
CSR4Fourth parameter of ISR
CSR5Fifth parameter of ISR
Line 9 (5G10.0)
SRESResidual saturation degree $(=S_{res})$
SRFIELDField saturation degree $(=S_{r, field})$
AIREVAir entry pressure $\left[Pa\right]$
AKRMINMinimum value of relative permeabikity
SRINIInitial saturation degree

Subscale parameters

To be repeated as many time as NLAWFEM2.

Line 1 (2I5)
ILAW2Number of the subscale constitutive law (=1:NLAWFEM2)
ITYPE2Type of subscale law (=1 for Hydraulic pollutant microscale law)
Line 2 (4G10.0)
POROSMaterial porosity ($=n$)
PERMINTMaterial intrinsic permeability ($=k_{int}$) $[m^2]$
DIFFCMaterial diffusion coefficient of the pollutant ($D_{app}$) $[m^2/s]$
TORTUMaterial tortuosity ($=\tau$)

Stresses

Number of stresses

28

Meaning

In 2D state :

SIG(1)$\sigma_x$ (unused)
SIG(2)$\sigma_y$ (unused)
SIG(3)$\sigma_{xy}$ (unused)
SIG(4)$\sigma_z$ (unused)
SIG(5)Homogenised liquid flow along $x$ $(=f_{wx})$
SIG(6)Homogenised liquid flow along $y$ $(=f_{wy})$
SIG(7)Homogenised liquid flow stored $(=f_{we})$
SIG(8)Homogenised mean flow of the pollutant along $x$ $(=(f_{px,a}+f_{px,b})/2)$
SIG(9)Homogenised mean flow of the pollutant along $y$ $(=(f_{py,a}+f_{py,b})/2)$
SIG(10)Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$
SIG(11)Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,b})$
SIG(12)Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,b})$
SIG(13)Homogenised gas flow along $x$ $(=f_{gx})$
SIG(14)Homogenised gas flow along $y$ $(=f_{gy})$
SIG(15)Homogenised gas flow stored $(=f_{ge})$
SIG(16)Advective flow of dissolved gas along $x$ (unused)
SIG(17)Advective flow of dissolved gas along $y$ (unused)
SIG(18)Unused
SIG(19)Unused
SIG(20)Unused
SIG(21)Unused
SIG(22)Unused
SIG(23)Unused
SIG(24)Unused
SIG(25)Unused
SIG(26)Unused
SIG(27)Unused
SIG(28)Unused

State variables

Number of state variables

10 + 5*(Number of Subscale Nodes)
/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg

List of state variables

Q(1)Liquid water mass at the RVE
Q(2)Pollutant mass at the RVE
Q(3)Gaseous air mass at the RVE
Q(4)Homogenised macroscale porosity
Q(5)Water saturation degree
Q(6)Homogenised water relative permeability
Q(7)Homogenised gas relative permeability
Q(8)Homogenised macroscale tortuosity
Q(9)Vapour mass at the RVE (unused)
Q(10)Homogenised succion
Q(11 + (i-1)*5)$X_i$
Q(11 + (i-1)*5 +1)$Y_i$
Q(11 + (i-1)*5 +2)$P_{w,i}$
Q(11 + (i-1)*5 +3)$C_i$
Q(11 + (i-1)*5 +4)$P_{g,i}$
laws/hmic.1700827949.txt.gz · Last modified: 2023/11/24 13:12 by gilles