This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:hill3d_ki [2022/02/20 14:29] ehssen |
laws:hill3d_ki [2023/03/28 18:12] (current) ehssen [List of state variables (if NTEO = 0 or 3)] |
||
---|---|---|---|
Line 26: | Line 26: | ||
|IKAP| 0 = Analytical compliance matrix **not working**\\ 1 = Perturbation compliance matrix| | |IKAP| 0 = Analytical compliance matrix **not working**\\ 1 = Perturbation compliance matrix| | ||
|MAXIT|Maximum number of iterations during stress integration| | |MAXIT|Maximum number of iterations during stress integration| | ||
- | |NTYPHP| Type of hardening law (see [[laws:HILL3D_KI#Hardening form|Hardening form]]), no action if NTEO = 1\\ = 1 (Swift hardening) \\ = 2 (Voce hardening) \\ = 3 (Swift hardening) | | + | |NTYPHP| Type of hardening law (see [[laws:HILL3D_KI#Hardening form|Hardening form]]), no action if NTEO = 1\\ = 1 (Swift hardening) \\ = 2 (Voce hardening) \\ = 3 (Ludwick hardening) | |
|INDAM| 0 (no fatigue damage computation)\\ > 1 (fatigue damage computation)| | |INDAM| 0 (no fatigue damage computation)\\ > 1 (fatigue damage computation)| | ||
^Line 2 (4I5)^^ | ^Line 2 (4I5)^^ | ||
- | |NTE0|0 Classic hardening\\ 1 Teodosiu hardening\\ 2 Teodosiu + Jauman hardening \\ 3 Ziegler hardening \\ 4 Armostrong-Frederick hardening with 2 terms| | + | |NTE0|0 Classic hardening\\ 1 Teodosiu hardening\\ 2 Teodosiu + Jauman hardening \\ 3 Ziegler hardening \\ 4 Armstrong-Frederick hardening with 2 terms| |
|//if nteo = 1 or nteo= 2, then//|| | |//if nteo = 1 or nteo= 2, then//|| | ||
|NREAD| = 1 Read the 58 state variables in .f72 (in column)| | |NREAD| = 1 Read the 58 state variables in .f72 (in column)| | ||
Line 143: | Line 143: | ||
Amstrong-Frederick (classic) : $\underline{\dot{X}} = C_{X}(X_{sat} \underline{\dot{\varepsilon}}^{plastic} \ - \overline{\dot{\varepsilon}}^{plastic}. \ \underline{X})$ \\ or \\ | Amstrong-Frederick (classic) : $\underline{\dot{X}} = C_{X}(X_{sat} \underline{\dot{\varepsilon}}^{plastic} \ - \overline{\dot{\varepsilon}}^{plastic}. \ \underline{X})$ \\ or \\ | ||
Ziegler kinematic hardening : $\underline{\dot{X}} = C_{A}\frac{1}{\sigma_{0}} (\underline{\sigma} - \underline{X}).\dot{\overline{\varepsilon}}^{plastic} – G_{A}. \underline{X}. \dot{\overline{\varepsilon}}^{plastic}$\\ | Ziegler kinematic hardening : $\underline{\dot{X}} = C_{A}\frac{1}{\sigma_{0}} (\underline{\sigma} - \underline{X}).\dot{\overline{\varepsilon}}^{plastic} – G_{A}. \underline{X}. \dot{\overline{\varepsilon}}^{plastic}$\\ | ||
+ | \\ | ||
+ | **(If NTEO = 4)**: __X__ = __X__1 + __X__2\\ | ||
+ | \\ | ||
**Parameters of fatigue law** ONLY IF INDAM > 1 | **Parameters of fatigue law** ONLY IF INDAM > 1 | ||
^Line 1 (10G10.0)^^ | ^Line 1 (10G10.0)^^ | ||
Line 199: | Line 202: | ||
|Q(3):Q(8)|Back stress (__X__)| | |Q(3):Q(8)|Back stress (__X__)| | ||
|Q(9)| Accumulated plastic equivalent strain divided by $\sqrt{2}$ ($\frac{\underline{\varepsilon^{pl}}}{\sqrt{2}}$ )| | |Q(9)| Accumulated plastic equivalent strain divided by $\sqrt{2}$ ($\frac{\underline{\varepsilon^{pl}}}{\sqrt{2}}$ )| | ||
+ | |Q(10):Q(15)|Plastic strain tensor $\underline{\varepsilon}^p$ (6 components)| | ||
+ | |Q(16):Q(18)|Principal strains $\varepsilon_{I}$, $\varepsilon_{II}$, $\varepsilon_{III}$| | ||
==== List of state variables (if NTEO = 4)==== | ==== List of state variables (if NTEO = 4)==== | ||
|Q(1)| Yield criterion = 0 : the previous step was elastic \\= 1: the previous step was elasto-plastic| | |Q(1)| Yield criterion = 0 : the previous step was elastic \\= 1: the previous step was elasto-plastic| | ||
|Q(2)| Accumulated plastic work ($W^{pl}$)| | |Q(2)| Accumulated plastic work ($W^{pl}$)| | ||
|Q(3):Q(8)|Total back stress (__X__)| | |Q(3):Q(8)|Total back stress (__X__)| | ||
- | |Q(9):Q(14)|First back stress (__X__{1})| | + | |Q(9):Q(14)|First back stress (__X__1)| |
|Q(15):Q(20)|Second back stress (__X__2)| | |Q(15):Q(20)|Second back stress (__X__2)| | ||
|Q(21)| Accumulated plastic equivalent strain divided by $\sqrt{2}$ ($\frac{\underline{\varepsilon^{pl}}}{\sqrt{2}}$ )| | |Q(21)| Accumulated plastic equivalent strain divided by $\sqrt{2}$ ($\frac{\underline{\varepsilon^{pl}}}{\sqrt{2}}$ )| |