User Tools

Site Tools


laws:evpirs

EVP-IRS

Description

Elastic‑visco‑plastic constitutive law for solid elements at constant temperature

The model

This law is used for a mechanical analysis of elastic‑visco‑plastic isotropic solids undergoing large strains.
Strain‑rate effects and isotropic hardening or recovery are included.

Files

Prepro: LIRSI.F
Lagamine: IRSI2S.F, IRSI2E.F, IRSI2A.F, IRSI3D.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 40
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTV number of sub‑steps used to integrate numerically the constitutive equation in a time step.
ICRIFR= 0 : nothing
= 1 : fracture criterion is computed

Real parameters

Line 1 (7G10.0)
E YOUNG’s elastic modulus
ANUPOISSON’s ratio
ANstrain rate exponent ($n$)
Bstrain rate coefficient ($B$)
AMhardening exponent ($m$)
H1hardening coefficient ($H_1$)
AQrecovery exponent ($q$)
Line 2 (4G10.0)
H2recovery coefficient ($H_2$)
AKOinitial yield limit ($K_o$)
ANIstrain exponent $(\bar{\sigma} = C \bar{\varepsilon}^n)$ only for the criterion of fracture
RHOspecific mass

Stresses

Number of stresses

= 6 for 3-D state
= 4 for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 24

List of state variables

Q(1) = element thickness (t) in plane stress state
= 1 in plane strain state
= circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state
= 0 in 3-D state
= element thickness (t) in generalized plane state
Q(2)current yield limit in tension; its initial value is $K_o$
Q(3)hydrostatic stress ($\sigma_m$)
Q(4)equivalent inelastic strain ($\bar{\varepsilon}^p$)
Q(5)plastic work per unit
Q(6) total strain energy per unit volume
Q(8)$\rightarrow$Q(11) failure criteria
Q(12)equivalent stress ($\bar{\sigma}$)
Q(13)localisation indicator (Vilotte) : increment of
Q(14)cumulated $\varepsilon_{eq}$
Q(15)$\varepsilon_{xx}$
Q(16)$\varepsilon_{yy}$
Q(17)$\varepsilon_{zz}$
Q(18)$\varepsilon_{xy}$
Q(19)$\dot{\varepsilon}_{eq}$
Q(24)actualised specific mass
laws/evpirs.txt · Last modified: 2020/08/25 15:46 (external edit)