This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:evp-nh [2019/03/19 16:55] chantal [Real parameters] |
laws:evp-nh [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 17: | Line 17: | ||
Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | ||
==== Subroutines ==== | ==== Subroutines ==== | ||
- | In the following table, fill in the file (*.F) and the names of the subroutines used by the law. Generic subroutines such as ‘ANNULD’ (putting a vector to zero) or ‘MST_SOLVE’ (computing the solution to a system of linear equations) do not need to be listed here. | + | |
^File^Subroutine^Description^ | ^File^Subroutine^Description^ | ||
- | |XXX.F| XXX|Main subroutine of the law | | + | |CALMAT.F | CALMAT|Computes material data at temperature T | |
+ | |NHIMAT.F |CALSIGY | | | ||
+ | |:::|MATMSGS2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGL2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGS|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|MATMSGL|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|EIGVECT| Computes eigen vectors| | ||
+ | |:::|CMATINV| Inverse complex matrix| | ||
+ | |:::|VGMOYEN |Computes the constant velocities gradient matrix | | ||
+ | |CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | | ||
+ | |RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation | | ||
===== Availability ===== | ===== Availability ===== | ||
|Plane stress state| NO | | |Plane stress state| NO | | ||
Line 101: | Line 112: | ||
$\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ | $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ | ||
The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ | The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ | ||
- | Otherwise: (ICHP2 ≠ 2) \\ | + | Otherwise, if ICHP2 ≠ 2: (see the law in section: "integer parameters") \\ |
$P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ | $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ | ||
$P_2= f(C_4, C_5, C_6, T)$ \\ | $P_2= f(C_4, C_5, C_6, T)$ \\ |