User Tools

Site Tools


laws:evp-nh

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:evp-nh [2019/03/19 16:55]
chantal [Real parameters]
laws:evp-nh [2020/08/25 15:46] (current)
Line 17: Line 17:
 Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4)
 ==== Subroutines ==== ==== Subroutines ====
-In the following table, fill in the file (*.F) and the names of the subroutines used by the law. Generic subroutines such as ‘ANNULD’ (putting a vector to zero) or ‘MST_SOLVE’ (computing the solution to a system of linear equations) do not need to be listed here.+
 ^File^Subroutine^Description^ ^File^Subroutine^Description^
-|XXX.F| XXX|Main subroutine of the law |+|CALMAT.F | CALMAT|Computes material data at temperature T | 
 +|NHIMAT.F |CALSIGY | | 
 +|:::​|MATMSGS2|Used for analytical compliance matrix| 
 +|:::​|MATMSGL2|Used for analytical compliance matrix| 
 +|:::​|MATMSGS|Used for analytical compliance matrix (3D case)| 
 +|:::​|MATMSGL|Used for analytical compliance matrix (3D case)| 
 +|:::​|EIGVECT| Computes eigen vectors| 
 +|:::​|CMATINV| Inverse complex matrix| 
 +|:::​|VGMOYEN |Computes ​the constant velocities gradient matrix | 
 +|CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | 
 +|RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation ​| 
 ===== Availability ===== ===== Availability =====
 |Plane stress state| NO | |Plane stress state| NO |
Line 61: Line 72:
  
 ^ If ICHP2 ≠ 2: 2 Lines  (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ ^ If ICHP2 ≠ 2: 2 Lines  (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^
-|$AK_0$| ​See X for formula|+|$AK_0$| |
 |$C_1$| See further| |$C_1$| See further|
 |$C_2$| See "​Information about EVP-NH"​| |$C_2$| See "​Information about EVP-NH"​|
Line 101: Line 112:
 $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\
 The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\
-Otherwise:  (ICHP2 ≠ 2) \\+Otherwise, if ICHP2 ≠ 2: (see the law in section: "​integer parameters"​) \\
 $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\
 $P_2= f(C_4, C_5, C_6, T)$ \\ $P_2= f(C_4, C_5, C_6, T)$ \\
laws/evp-nh.1553010900.txt.gz · Last modified: 2020/08/25 15:35 (external edit)