This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:evp-nh [2019/03/19 16:41] chantal [Real parameters] |
laws:evp-nh [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 5: | Line 5: | ||
Project: continuous casting research for ARBED (RW2748)\\ | Project: continuous casting research for ARBED (RW2748)\\ | ||
==== The model ==== | ==== The model ==== | ||
- | Coupled dynamic recrystallisation-thermo mechanical analysis of elasto visco plastic solids undergoing large strains.\\ | + | Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.\\ |
JAUMANN stress rate is used\\ | JAUMANN stress rate is used\\ | ||
__IANA= 2, 3, 5:__\\ | __IANA= 2, 3, 5:__\\ | ||
- | See report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\ | + | See intermediate report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\ |
For details on equations used in analytical compliance matrix computation, see appendix D of April 1998\\ | For details on equations used in analytical compliance matrix computation, see appendix D of April 1998\\ | ||
__IANA= 4:__\\ | __IANA= 4:__\\ | ||
Line 17: | Line 17: | ||
Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | ||
==== Subroutines ==== | ==== Subroutines ==== | ||
- | In the following table, fill in the file (*.F) and the names of the subroutines used by the law. Generic subroutines such as ‘ANNULD’ (putting a vector to zero) or ‘MST_SOLVE’ (computing the solution to a system of linear equations) do not need to be listed here. | + | |
^File^Subroutine^Description^ | ^File^Subroutine^Description^ | ||
- | |XXX.F| XXX|Main subroutine of the law | | + | |CALMAT.F | CALMAT|Computes material data at temperature T | |
+ | |NHIMAT.F |CALSIGY | | | ||
+ | |:::|MATMSGS2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGL2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGS|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|MATMSGL|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|EIGVECT| Computes eigen vectors| | ||
+ | |:::|CMATINV| Inverse complex matrix| | ||
+ | |:::|VGMOYEN |Computes the constant velocities gradient matrix | | ||
+ | |CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | | ||
+ | |RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation | | ||
===== Availability ===== | ===== Availability ===== | ||
|Plane stress state| NO | | |Plane stress state| NO | | ||
Line 54: | Line 65: | ||
^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ | ^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ | ||
|T| Temperature| | |T| Temperature| | ||
- | |$K_0$| See X for formula| | + | |$K_0$| See further| |
- | |$P_1$| A ADAPTER| | + | |$P_1$| See "Information about EVP-NH"| |
- | |$P_2$| see 4.4 for more information| | + | |$P_2$| | |
|$P_3$| | | |$P_3$| | | ||
|$P_4$| | | |$P_4$| | | ||
^ If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ | ^ If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ | ||
- | |$AK_0$| See X for formula| | + | |$AK_0$| | |
- | |$C_1$| A ADAPTER| | + | |$C_1$| See further| |
- | |$C_2$| see 4.4 for more information| | + | |$C_2$| See "Information about EVP-NH"| |
|$C_3$| | | |$C_3$| | | ||
|$C_4$| | | |$C_4$| | | ||
Line 101: | Line 112: | ||
$\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ | $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ | ||
The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ | The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ | ||
- | Otherwise: (ICHP2 ≠ 2) \\ | + | Otherwise, if ICHP2 ≠ 2: (see the law in section: "integer parameters") \\ |
$P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ | $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ | ||
$P_2= f(C_4, C_5, C_6, T)$ \\ | $P_2= f(C_4, C_5, C_6, T)$ \\ |