This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:evp-nh [2019/03/19 15:33] chantal [Real parameters] |
laws:evp-nh [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 5: | Line 5: | ||
Project: continuous casting research for ARBED (RW2748)\\ | Project: continuous casting research for ARBED (RW2748)\\ | ||
==== The model ==== | ==== The model ==== | ||
- | Coupled dynamic recrystallisation-thermo mechanical analysis of elasto visco plastic solids undergoing large strains.\\ | + | Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.\\ |
JAUMANN stress rate is used\\ | JAUMANN stress rate is used\\ | ||
__IANA= 2, 3, 5:__\\ | __IANA= 2, 3, 5:__\\ | ||
- | See report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\ | + | See intermediate report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\ |
For details on equations used in analytical compliance matrix computation, see appendix D of April 1998\\ | For details on equations used in analytical compliance matrix computation, see appendix D of April 1998\\ | ||
__IANA= 4:__\\ | __IANA= 4:__\\ | ||
Line 17: | Line 17: | ||
Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) | ||
==== Subroutines ==== | ==== Subroutines ==== | ||
- | In the following table, fill in the file (*.F) and the names of the subroutines used by the law. Generic subroutines such as ‘ANNULD’ (putting a vector to zero) or ‘MST_SOLVE’ (computing the solution to a system of linear equations) do not need to be listed here. | + | |
^File^Subroutine^Description^ | ^File^Subroutine^Description^ | ||
- | |XXX.F| XXX|Main subroutine of the law | | + | |CALMAT.F | CALMAT|Computes material data at temperature T | |
+ | |NHIMAT.F |CALSIGY | | | ||
+ | |:::|MATMSGS2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGL2|Used for analytical compliance matrix| | ||
+ | |:::|MATMSGS|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|MATMSGL|Used for analytical compliance matrix (3D case)| | ||
+ | |:::|EIGVECT| Computes eigen vectors| | ||
+ | |:::|CMATINV| Inverse complex matrix| | ||
+ | |:::|VGMOYEN |Computes the constant velocities gradient matrix | | ||
+ | |CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | | ||
+ | |RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation | | ||
===== Availability ===== | ===== Availability ===== | ||
|Plane stress state| NO | | |Plane stress state| NO | | ||
Line 51: | Line 62: | ||
|ANU| POISSON’s ratio at temperature T| | |ANU| POISSON’s ratio at temperature T| | ||
|ALPHA| Thermal expansion coefficient (α) at temperature T. \\ Even if IALG = 1, ALPHA must be introduced at temperature T. \\ In this case, $\int_0^T\alpha(T).dT$ will be automatically computed | | |ALPHA| Thermal expansion coefficient (α) at temperature T. \\ Even if IALG = 1, ALPHA must be introduced at temperature T. \\ In this case, $\int_0^T\alpha(T).dT$ will be automatically computed | | ||
+ | |||
^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ | ^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ | ||
|T| Temperature| | |T| Temperature| | ||
- | |$K_0$| See X for formula| | + | |$K_0$| See further| |
- | |$P_1$| A ADAPTER| | + | |$P_1$| See "Information about EVP-NH"| |
- | |$P_2$| see 4.4 for more information| | + | |$P_2$| | |
|$P_3$| | | |$P_3$| | | ||
|$P_4$| | | |$P_4$| | | ||
+ | |||
^ If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ | ^ If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ | ||
- | |$AK_0$| See X for formula| | + | |$AK_0$| | |
- | |$C_1$| A ADAPTER| | + | |$C_1$| See further| |
- | |$C_2$| see 4.4 for more information| | + | |$C_2$| See "Information about EVP-NH"| |
|$C_3$| | | |$C_3$| | | ||
|$C_4$| | | |$C_4$| | | ||
Line 68: | Line 81: | ||
|$P_3$| (be careful: 0 < $P_3$ < 1)| | |$P_3$| (be careful: 0 < $P_3$ < 1)| | ||
|$P_4$| | | |$P_4$| | | ||
+ | |||
^ 1 Line (4G10) ^^ | ^ 1 Line (4G10) ^^ | ||
|TQ| Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :\\ < 0: when thermal analysis within a semi-coupled analysis\\ > 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)| | |TQ| Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :\\ < 0: when thermal analysis within a semi-coupled analysis\\ > 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)| | ||
Line 73: | Line 87: | ||
|PRECELA| precision in elastic computation\\ ≤ 0: set default value = $1.10^{-4}$| | |PRECELA| precision in elastic computation\\ ≤ 0: set default value = $1.10^{-4}$| | ||
|EPSINC| increment of deformation for the automatic computation of NINTV\\ ≤ 0: set default value = $1.10^{-3}$| | |EPSINC| increment of deformation for the automatic computation of NINTV\\ ≤ 0: set default value = $1.10^{-3}$| | ||
+ | |||
^ If IDYN = 1: 4 Lines (3I5/4G10.0/4G10.0/2G10.0) ^^ | ^ If IDYN = 1: 4 Lines (3I5/4G10.0/4G10.0/2G10.0) ^^ | ||
|ICOUPL| = 1: the recrystallisation is coupled | | |ICOUPL| = 1: the recrystallisation is coupled | | ||
Line 88: | Line 103: | ||
|$Q_3$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | | |$Q_3$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | | ||
|$Q_4$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | | |$Q_4$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | | ||
- | |ACTIV| Activation energy for Zener computation : FORMULE \\ with T the temperature and R the Boltzman gas constant| | + | |ACTIV| Activation energy for Zener computation : $Z=\dot{\varepsilon}.EXP(\frac{ACTIV}{R.T})$ \\ with T the temperature and R the Boltzman gas constant| |
- | |EXPO| Exponent for the AVRAMI law : FORMULE | | + | |EXPO| Exponent for the AVRAMI law : $X= 1- EXP[-3.(\frac{\bar{\varepsilon}-\varepsilon_c}{\varepsilon_s-\varepsilon_c})^{expo}]$ | |
__**NOTE:**__ ISTRA(3) parameter of the execution file:\\ **Units:** \\ = 0: analytical compliance matrix used (default value) \\ = 1: perturbation method \\ **Tens:** \\ = 0: mean velocities gradient (default value) \\ = 1: initial velocities gradient \\ **Hundreds:** \\ = 0: yield limit given by intersection between N-H curve and Young’s straight line \\ = 1: yield limit given by K0 (given parameter – see below) \\ | __**NOTE:**__ ISTRA(3) parameter of the execution file:\\ **Units:** \\ = 0: analytical compliance matrix used (default value) \\ = 1: perturbation method \\ **Tens:** \\ = 0: mean velocities gradient (default value) \\ = 1: initial velocities gradient \\ **Hundreds:** \\ = 0: yield limit given by intersection between N-H curve and Young’s straight line \\ = 1: yield limit given by K0 (given parameter – see below) \\ | ||
+ | |||
\\ __**Information about EVP-NH:**__ \\ | \\ __**Information about EVP-NH:**__ \\ | ||
For the 1D case, we have: \\ | For the 1D case, we have: \\ | ||
- | FORMULE \\ | + | $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ |
- | The parameters K0, P1, P2, P3, P4 can be given at several temperatures (ICHP2 = 2) \\ | + | The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ |
- | Otherwise: (ICHP2 ≠ 2) \\ | + | Otherwise, if ICHP2 ≠ 2: (see the law in section: "integer parameters") \\ |
- | Formule 1 \\ | + | $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ |
- | Formule 2 \\ | + | $P_2= f(C_4, C_5, C_6, T)$ \\ |
- | Formule 3 \\ | + | $P_3, P_4, K_0= constants$ \\ |