Elasto-plastic constitutive law for solid elements at constant temperature.
This law is used for a mechanical analysis of elasto-plastic isotropic solids undergoing large strains. Mixed hardening is assumed.
Prepro: LARB.F
Plane stress state | YES |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | YES |
Generalized plane state | YES |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 50 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (6I5) | |
---|---|
NINTV | number of sub-steps used to integrate numerically the constitutive equation in a time step. |
NPOINT | = 0 if the law is described by Figure 1 (bilinear or one parabola) |
= NN if the law is described by points (a lot of linear segments) (figure 2) | |
= -1 if the law is described by $\sigma=C.\varepsilon^n$ (figure 3) | |
ICBIF | = 1 if there is a comp. bifurcation criterion (plane strain analysis only) |
= 0 otherwise (no comp.) | |
ITHICK | = 1 if the initial thickness $\neq$ ONE |
= 0 if the initial thickness = ONE, to be introduced for plane stress state only | |
NIANA | Type of problem |
INDAM | $\geq$ 1 if fatigue damage computes (see section 4.4) |
= 0 if there is no damage |
Line 1 (7G10.0) | |
---|---|
E | YOUNG's elastic modulus |
ANU | POISSON's ratio |
SIGY1 | lower yield limit ($\sigma_{y1}$) |
SIGY2 | upper yield limit ($\sigma_{y2}$) If SIGY2$\leq$SIGY1 : bilinear law) |
EPS2 | upper yield strain ($\varepsilon_2$) |
ET | elasto-plastic tangent modulus (E_t) |
ECROU | = 0 for isotropic hardening |
= 1 for kinematic hardening | |
$\in$[0,1] for mixed hardening |
Line 1 (2G10.0) | |
---|---|
ANU | POISSON's ratio |
ECROU | = 0 for isotropic hardening |
= 1 for kinematic hardening | |
$\in$[0,1] for mixed hardening | |
Line 2 (2G10.0) - Repeat NPOINT times | |
EPS | true strain [-] |
SIG | true stress [MPa] |
Line 1 (5G10.0) | |
---|---|
E | YOUNG's elastic modulus |
ANU | POISSON's ratio |
ECROU | = 0 for isotropic hardening |
= 1 for kinematic hardening | |
$\in$[0,1] for mixed hardening | |
PARAC | parameter C in $\sigma=C.\varepsilon^n$ |
PARAN | parameter n in $\sigma=C.\varepsilon^n$ |
N.B. : Possibility of a ($\bar{\sigma},\bar{\varepsilon}$) curve increasing or decreasing.
1 Line (G10.0) | |
---|---|
THICK | Initial thickness ![]() |
Line 1 (Only if INDAM$\neq$0 : 8G10.0) | |
---|---|
SIGL | fatigue damage yield stress |
SIGU | ultimate tensile stress |
BETA | fatigue damage parameter |
ADAM | fatigue damage parameter |
BDAM | fatigue damage parameter |
M0 | fatigue damage parameter |
DLIM | crack limit damage |
PERIO | period of loading |
About INDAM : there is currently three ways to compute fatigue damage. The choice of one or another method depends on INDAM parameter value.
6 for 3D state
4 for the other cases
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{xz}$ |
SIG(6) | $\sigma_{yz}$ |
For the other cases:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{xy}$ |
SIG(4) | $\sigma_{zz}$ |
20 for the 3D state
30 for EP
18 for the other cases
Q(1) | THICK | Element thickness (t) in plane stress state |
= 1 in plane strain state | ||
circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axysimmetrical state | ||
= 0 in 3D state | ||
element thickness (t) in generalized plane state | ||
Q(2) | AK2 | current yield limit in tension its initial value is $\sigma_{y1}$ |
Q(3) | YIELD | = 0 if the current state is elastic |
= 1 if the current state is elasto-plastic | ||
Q(4) | EPSB | equivalent plastic strain ($\bar{\varepsilon}^p$) |
Q(5) | DISSIP | plastic work per unit volume |
Q(6) | TWORK | total strain energy per unit volume (elastic + plastic) |
Q(7) $\rightarrow$ Q(12) | fracture criteria | |
Q(13) | AKE | equivalent stress for mixed hardening |
Q(14) | AF1I | back stress for kinematic and mixed hardening |
Q(15) | AF2I | |
Q(16) | AF3I | |
Q(17) | AF12I | |
Q(18) | equivalent stress ($\bar{\sigma}$) | |
Q(18) | AF13I | only for 3D state |
Q(19) | AF23I | |
Q(20) | equivalent stress ($\bar{\sigma}$) | |
Q(19) $\rightarrow$ Q(30) | modulus for the analysis of bifurcation (only for EP) | |
Q(31) | indicator type VILOTTE n°1 | |
Q(32) | unity of $\varepsilon_{eq}$ | |
Q(33) | age of the point of the mesh | |
= 1 if the element must be re-meshed | ||
= 0 otherwise | ||
Q(37) | SMAX1 | maximum of deviator $S_{xx}$ |
Q(38) | SMAX2 | maximum of deviator $S_{yy}$ |
Q(39) | SMAX3 | maximum of deviator $S_{zz}$ |
Q(40) | SMAX12 | maximum of deviator $S_{xy}$ |
Q(41) | SMAX13 | maximum of deviator $S_{xz}$ |
Q(42) | SMAX23 | maximum of deviator $S_{yz}$ |
Q(43) | SMIN1 | minimum of deviator $S_{xx}$ |
Q(44) | SMIN2 | minimum of deviator $S_{yy}$ |
Q(45) | SMIN3 | minimum of deviator $S_{zz}$ |
Q(46) | SMIN12 | minimum of deviator $S_{xy}$ |
Q(47) | SMIN13 | minimum of deviator $S_{xz}$ |
Q(48) | SMIN23 | minimum of deviator $S_{yz}$ |
Q(49) | CUMTR | sum of stress trace |
Q(50) | NCAL | sum of number of step |
Q(51) | SIGEQM | maximum equivalent stress |
Q(52) | CYCI | number of cycle |
Q(53) | TIME | time |
Q(54) | DAM | damage variable |
Q(55) | NFAT | number of fatigue cycles before failure (initialized to 0 and calculated when DAM reaches the value of 1) |
Q(56) | SIGHM | maximum of hydrostatic stress |