Table of Contents

EP-ARB

Description

Elasto-plastic constitutive law for solid elements at constant temperature.

The model

This law is used for a mechanical analysis of elasto-plastic isotropic solids undergoing large strains. Mixed hardening is assumed.

Files

Prepro: LARB.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 50
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (6I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step.
NPOINT = 0 if the law is described by Figure 1 (bilinear or one parabola)
= NN if the law is described by points (a lot of linear segments) (figure 2)
= -1 if the law is described by $\sigma=C.\varepsilon^n$ (figure 3)
ICBIF = 1 if there is a comp. bifurcation criterion (plane strain analysis only)
= 0 otherwise (no comp.)
ITHICK = 1 if the initial thickness $\neq$ ONE
= 0 if the initial thickness = ONE, to be introduced for plane stress state only
NIANA Type of problem 
INDAM $\geq$ 1 if fatigue damage computes (see section 4.4)
= 0 if there is no damage

Real parameters

If NPOINT=0

Line 1 (7G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
SIGY1 lower yield limit ($\sigma_{y1}$)
SIGY2 upper yield limit ($\sigma_{y2}$)
If SIGY2$\leq$SIGY1 : bilinear law)
EPS2 upper yield strain ($\varepsilon_2$)
ET elasto-plastic tangent modulus (E_t)
ECROU = 0 for isotropic hardening
= 1 for kinematic hardening
$\in$[0,1] for mixed hardening

If NPOINT>0

Line 1 (2G10.0)
ANU POISSON's ratio
ECROU = 0 for isotropic hardening
= 1 for kinematic hardening
$\in$[0,1] for mixed hardening
Line 2 (2G10.0) - Repeat NPOINT times
EPS true strain [-]
SIG true stress [MPa]

If NPOINT=-1

Line 1 (5G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
ECROU = 0 for isotropic hardening
= 1 for kinematic hardening
$\in$[0,1] for mixed hardening
PARAC parameter C in $\sigma=C.\varepsilon^n$
PARAN parameter n in $\sigma=C.\varepsilon^n$

N.B. : Possibility of a ($\bar{\sigma},\bar{\varepsilon}$) curve increasing or decreasing.

If ITHICK = 1

1 Line (G10.0)
THICK Initial thickness
:!: Doesn't work with JET2D element

Fatigue Continuum damage parameters

Line 1 (Only if INDAM$\neq$0 : 8G10.0)
SIGL fatigue damage yield stress
SIGU ultimate tensile stress
BETA fatigue damage parameter
ADAM fatigue damage parameter
BDAM fatigue damage parameter
M0 fatigue damage parameter
DLIM crack limit damage
PERIO period of loading

About INDAM : there is currently three ways to compute fatigue damage. The choice of one or another method depends on INDAM parameter value.

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

20 for the 3D state
30 for EP
18 for the other cases

List of state variables

Q(1)THICK Element thickness (t) in plane stress state
= 1 in plane strain state
circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axysimmetrical state
= 0 in 3D state 
element thickness (t) in generalized plane state
Q(2)AK2 current yield limit in tension
its initial value is $\sigma_{y1}$
Q(3)YIELD = 0 if the current state is elastic
= 1 if the current state is elasto-plastic
Q(4)EPSB equivalent plastic strain ($\bar{\varepsilon}^p$)
Q(5)DISSIP plastic work per unit volume
Q(6)TWORK total strain energy per unit volume (elastic + plastic)
Q(7) $\rightarrow$ Q(12) fracture criteria
Q(13)AKE equivalent stress for mixed hardening
Q(14)AF1I back stress for kinematic and mixed hardening 
Q(15)AF2I
Q(16)AF3I
Q(17)AF12I
Q(18) equivalent stress ($\bar{\sigma}$)
Q(18)AF13I only for 3D state
Q(19)AF23I
Q(20) equivalent stress ($\bar{\sigma}$)
Q(19) $\rightarrow$ Q(30) modulus for the analysis of bifurcation (only for EP)
Q(31) indicator type VILOTTE n°1
Q(32) unity of $\varepsilon_{eq}$
Q(33) age of the point of the mesh 
= 1 if the element must be re-meshed
= 0 otherwise
Q(37)SMAX1 maximum of deviator $S_{xx}$
Q(38)SMAX2 maximum of deviator $S_{yy}$
Q(39)SMAX3 maximum of deviator $S_{zz}$
Q(40)SMAX12 maximum of deviator $S_{xy}$
Q(41)SMAX13 maximum of deviator $S_{xz}$
Q(42)SMAX23 maximum of deviator $S_{yz}$
Q(43)SMIN1 minimum of deviator $S_{xx}$
Q(44)SMIN2 minimum of deviator $S_{yy}$
Q(45)SMIN3 minimum of deviator $S_{zz}$
Q(46)SMIN12 minimum of deviator $S_{xy}$
Q(47)SMIN13 minimum of deviator $S_{xz}$
Q(48)SMIN23 minimum of deviator $S_{yz}$
Q(49)CUMTR sum of stress trace
Q(50)NCAL sum of number of step 
Q(51)SIGEQM maximum equivalent stress
Q(52)CYCI number of cycle
Q(53)TIME time
Q(54)DAM  damage variable
Q(55) NFAT number of fatigue cycles before failure (initialized to 0 and calculated when DAM reaches the value of 1)
Q(56)SIGHM maximum of hydrostatic stress