This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
laws:ecous [2019/08/23 14:17] helene created |
laws:ecous [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 9: | Line 9: | ||
This law is used for non linear analysis of seepage in porous media. The case of free surface seepage is also treated. This law is used in two or three dimensional flow. \\ | This law is used for non linear analysis of seepage in porous media. The case of free surface seepage is also treated. This law is used in two or three dimensional flow. \\ | ||
- | The mathematical model is : | + | The mathematical model is: |
- | 1) Conservation of the mass of the fluid : \[\frac{\partial}{\partial t}(\rho_f.\theta)+div(\rho_f.\underline{q})=0\] | + | - Conservation of the mass of the fluid: \[\frac{\partial}{\partial t}(\rho_f.\theta)+div(\rho_f.\underline{q})=0\] |
- | 2) Motion of the fluid : \[\underline{q} = \frac{-k}{\mu}\left(\underline{grad}(p)+\rho_f.g.\underline{grad}(z)\right)\] | + | - Motion of the fluid: \[\underline{q} = \frac{-k}{\mu}\left(\underline{grad}(p)+\rho_f.g.\underline{grad}(z)\right)\] |
==== Files ==== | ==== Files ==== | ||
- | |||
- | |||
Prepro: LECOUS.F \\ | Prepro: LECOUS.F \\ | ||
+ | Lagamine: ECOU2.F, ECOU22.F, ECOU3.F | ||
===== Availability ===== | ===== Availability ===== | ||
- | |||
|Plane stress state| YES| | |Plane stress state| YES| | ||
Line 31: | Line 28: | ||
===== Input file ===== | ===== Input file ===== | ||
- | |||
==== Parameters defining the type of constitutive law ==== | ==== Parameters defining the type of constitutive law ==== | ||
Line 43: | Line 39: | ||
^ Line 1 (6I5) ^^ | ^ Line 1 (6I5) ^^ | ||
- | |ISEMI| = 0 : flow analysis | | + | |ISEMI| = 0 → flow analysis | |
- | |:::| = 1 : if semi-coupled mechanical-flow analysis | | + | |:::| = 1 → if semi-coupled mechanical-flow analysis | |
- | |:::| = 2 : if full coupled mechanical-flow analysis | | + | |:::| = 2 → if full coupled mechanical-flow analysis | |
- | |IANI| = 0 : isotropic case | | + | |IANI| = 0 → isotropic case | |
- | |:::| $\neq 0$ : anisotropic case | | + | |:::| ≠ 0 → anisotropic case | |
|IKRN| = 0 | | |IKRN| = 0 | | ||
- | |:::| = 1 : Kozeny Karman relation $K=f(n)$ | | + | |:::| = 1 → Kozeny Karman relation $K=f(n)$ | |
- | |:::| = 2 : GDR Momas relation $K=f(n)$ | | + | |:::| = 2 → GDR Momas relation $K=f(n)$ | |
|ISRW| Formulation index for $S_w$ (see [[appendices:a8|Appendix 8]]) | | |ISRW| Formulation index for $S_w$ (see [[appendices:a8|Appendix 8]]) | | ||
- | |:::| $\neq 0$ : in case of seepage with free surface | | + | |:::|≠ 0 → in case of seepage with free surface | |
- | |:::| = 0 : in absence of free surface | | + | |:::| = 0 → in absence of free surface | |
|IKW| Formulation index for $k_w$ (see [[appendices:a8|Appendix 8]]) | | |IKW| Formulation index for $k_w$ (see [[appendices:a8|Appendix 8]]) | | ||
|ISTRUCT| Formulation index for istruct | | |ISTRUCT| Formulation index for istruct | | ||
- | ==== Real parameters : permeability definition ==== | + | ==== Real parameters: permeability definition ==== |
The permeability $k$ is an intrinsic permeability ([$L^2$]) and $K$ is the permeability coefficient ([$LT^{-1}$]) : \[k_{intrinsic} = K\frac{\mu_f}{\rho_f g}\]\[[L^2]=[LT^{-1}]\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\] | The permeability $k$ is an intrinsic permeability ([$L^2$]) and $K$ is the permeability coefficient ([$LT^{-1}$]) : \[k_{intrinsic} = K\frac{\mu_f}{\rho_f g}\]\[[L^2]=[LT^{-1}]\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\] | ||
- | If IANI$\neq$ 0, then for I=1 : | + | __If IANI ≠ 0__ |
- | ^ Line 1 (4G10.0) ^^ | + | ^ Line 1 (4G10.0) - Repeat IANI times (I=1,IANI) ^^ |
|PERMEA(I)| Soil anisotropic intrinsic permeability (k) in the direction I | | |PERMEA(I)| Soil anisotropic intrinsic permeability (k) in the direction I | | ||
|COSX(I)| Director cosinus of the direction I | | |COSX(I)| Director cosinus of the direction I | | ||
Line 70: | Line 65: | ||
|COSZ(I)| Director cosinus of the direction I | | |COSZ(I)| Director cosinus of the direction I | | ||
- | Else, if IANI = 0 : | + | __Else, if IANI = 0__ |
^ Line 1 (1G10.0) ^^ | ^ Line 1 (1G10.0) ^^ | ||
|PERME| Soil isotropic intrinsic permeability (k) | | |PERME| Soil isotropic intrinsic permeability (k) | | ||
Line 122: | Line 117: | ||
===== Stresses ===== | ===== Stresses ===== | ||
- | |||
==== Number of stresses ==== | ==== Number of stresses ==== | ||
- | |||
5 for 3D state \\ 4 for the other cases | 5 for 3D state \\ 4 for the other cases | ||
- | |||
==== Meaning ==== | ==== Meaning ==== | ||
- | |||
For the 3-D state: | For the 3-D state: | ||
Line 140: | Line 131: | ||
|SIG(4)| fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$) | | |SIG(4)| fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$) | | ||
|SIG(5)| none | | |SIG(5)| none | | ||
- | |||
For the other cases: | For the other cases: | ||
Line 148: | Line 138: | ||
|SIG(3)| fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$) | | |SIG(3)| fluid mass stored as a consequence of the evolution of soil porosity ($=\rho_e=\frac{\partial}{\partial t}(\rho_f\theta)$) | | ||
|SIG(4)| none | | |SIG(4)| none | | ||
- | |||
===== State variables ===== | ===== State variables ===== | ||
Line 166: | Line 155: | ||
|:::| $S_r=\frac{\theta}{n_0}$ if $p<0$ | | |:::| $S_r=\frac{\theta}{n_0}$ if $p<0$ | | ||
|Q(5)| Actualised fluid specific mass | | |Q(5)| Actualised fluid specific mass | | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- |