This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:chab [2022/09/15 15:33] helene [List of state variables] |
laws:chab [2022/09/28 16:23] (current) helene |
||
---|---|---|---|
Line 148: | Line 148: | ||
|$k_4$|Safety coefficient applied to stress level on creep damage| | |$k_4$|Safety coefficient applied to stress level on creep damage| | ||
^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^ | ^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^ | ||
- | |$A_i$| coefficient for expression of bi using Arrhenius equation| | + | |$A_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/T)$| |
- | |$B_i$| coefficient for expression of bi using Arrhenius equation| | + | |$B_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/T)$| |
=== Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 === | === Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 === | ||
Line 297: | Line 297: | ||
===== State variables ===== | ===== State variables ===== | ||
==== Number of state variables ==== | ==== Number of state variables ==== | ||
- | 24+6*nAF+6*nAFY+H(UIDAM)*(2+2*ddim+6)+2*H(DIDAM)+8*ILCF \\ | + | $24+6n_{AF}+6n_{AF_Y}+(8+2ddim)\mathscr{H}(u_{i_{dam}})+2\mathscr{H}(d_{i_{dam}})+8i_{LCF}$ |
- | Where: UIDAM=IDAM mod 10 and DIDAM=IDAM-UIDAM \\ | + | \\ |
- | H() is the Heaviside step function. | + | Where: $u_{i_{dam}}\equiv i_{dam} \mod 10$ \\ and $d_{i_{dam}}=i_{dam}-u_{i_{dam}}$. \\ |
+ | $\mathscr{H}(x)$ is the Heaviside step function: $\mathscr{H}(x)=1$ if and only if $x>0$, otherwise, $\mathscr{H}(x)=0$. | ||
==== List of state variables ==== | ==== List of state variables ==== | ||
|Q(1)|plastic strain norm $p$| | |Q(1)|plastic strain norm $p$| | ||
Line 312: | Line 313: | ||
|Q(18+6nAF+6i:23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY| | |Q(18+6nAF+6i:23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY| | ||
|Q(24+6nAF+6nAFY)|Maximum temperature in the loading history| | |Q(24+6nAF+6nAFY)|Maximum temperature in the loading history| | ||
- | ===Only if 10>IDAM>0=== | + | ===Only if $u_{i_{dam}}>0$=== |
- | In the following table, ddim=1 for isotropic damage (scalar damage variable D) and ddim=6 for anisotropic damage (not implemented). | + | In the following table, ddim=1 for isotropic damage (scalar damage variable $D$) and ddim=6 for anisotropic damage (not implemented). |
|Q(25+6NAF+6NAFY)| Stored energy $w_s$| | |Q(25+6NAF+6NAFY)| Stored energy $w_s$| | ||
|Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$| | |Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$| | ||
Line 319: | Line 320: | ||
| Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic - not implemented)| | | Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic - not implemented)| | ||
| Q(27+2ddim+6NAF+6NAFY) \\ … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$| | | Q(27+2ddim+6NAF+6NAFY) \\ … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$| | ||
- | ===Only if IDAM≥10=== | + | ===Only if $i_{dam}$≥10=== |
- | NQDU=25+6nAF+6nAFY+(8+2ddim)<UIDAM> | + | $N_{Q,D_u}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})$ |
+ | \\ with $\mathscr{H}(u_{i_{dam}})=1$ if and only if $u_{i_{dam}}>0$ | ||
| Q(NQDU)| $D_u$ - Uniform corrosion damage| | | Q(NQDU)| $D_u$ - Uniform corrosion damage| | ||
| Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)| | | Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)| | ||
- | === Only if ILCF>0 === | + | === Only if $i_{LCF}>0$ === |
- | NQLCF=25+6nAF+6nAFY+(8+2ddim)<UIDAM>+2DIDAM (where DIDAM=1 if IDAM≥10 and 0 otherwise) | + | $N_{Q,LCF}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})+2d_{i_{dam}}$ \\ where $d_{i_{dam}}=1$ if $i_{dam}$≥10 and 0 otherwise) |
| Q(NQLCF)| t (time)| | | Q(NQLCF)| t (time)| | ||
|Q(1+NQLCF) |N (cycle)| | |Q(1+NQLCF) |N (cycle)| |