User Tools

Site Tools


elements:ssh3d

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:ssh3d [2019/03/26 17:37]
ehssen
elements:ssh3d [2020/08/25 15:46] (current)
Line 1: Line 1:
 ====== SSH3D ====== ====== SSH3D ======
 +3D solid-shell element
 ===== Description ===== ===== Description =====
 +{{  :​elements:​blz3d.png?​300|}}
 +Type: 23 \\ \\
 +Implemented by: A. Ben Bettaieb, L. Duchêne, A-M. Habraken (2009)
  
-{{ :​elements:​blz3d.png?​300|}} +==== Files ====
-The SSH3D formulation employs the +
-Enhanced Assumed Strain (EAS) technique based on the Hu-Washizu variational principle combined with the Assumed Natural Strain (ANS) technique in order to overcome various locking pathologies. \\ +
- +
-Implemented by: Amine Ben Bettaieb, December 2009 +
- +
-Type: 23+
  
 Prepro: SSH3DA.F \\ Prepro: SSH3DA.F \\
-Lagamine: SSH3DB.F\\+Lagamine: SSH3DB.F
  
 ===== Input file ===== ===== Input file =====
-^TITLE (A5)^^ +^Title (A5)^^ 
-|TITLE ​ 'SSH3D' en colonnes 1 à 5| +|TITLE|"SSH3D" in the first columns
-^CONTROL ​(4I5)^^ +^Control data (4I5)^^ 
-|NELEM ​ Nombre d'​éléments ​  +|NELEM|Number of elements
-|NEAS   ​Nombre de modes EAS (Enhanced Assumed Strain) ​compris entre et 30 +|NEAS|Number of EAS modes (Enhanced Assumed Strain), between ​and 30| 
-|ILOAX ​ | Calcul avec les axes locaux| +|ILOAX ​ |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes| 
-|:::    |=1 if shear coefficient taken into account| +|:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| 
-|:::    |=-1 for use of element BWD3D (only 1 integration point)+|:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes|
-|ILOAX ​ |=0 for global axis computation \\ ☛ Objectivity must be verified in the material law \\ ☛ No rotation of material axes| +
-|:::|<0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| +
-|:::|>0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes|+
 |:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| |:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method|
-|:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​ \\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| +|:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub> ​(and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| 
-|ISIG0= 0 if no initial stresses| +|NPTH|Number ​of integration points on the width (in the ζ direction) ​of the element ​(NPTH ∈ [2,10]). The number ​of integration points ​in the ξ-η plane is equal to 4.
-|:::| = 1 for input of initial stresses| +^1 to 3 lines depending on NEAS value - List of EAS modes (14I5)^^ 
-^CONSIDERATION OF WEIGHT ​(4G10.0) \\ Only if INDPP = 1 ^^ +|EAS(List1)|List of 1:NEAS if NEAS ∈ [1,14] or 1:14 if NEAS 14
-|WSPE(1)| = specific weight ​in direction+|EAS(List2)|List of 15:NEAS if NEAS ∈ [15,28] or 15:28 if NEAS 28
-|WSPE(2)| = specific weight in Y direction| +|EAS(List3)|List of 29:NEAS if NEAS ∈ [29,30]
-|WSPE(3)| = specific weight in Z direction| +^Definition of the elements (I5/8I5)^^  
-|WSPE(4)| = density|  +|LMATE|Material law
-^CONSIDERATION OF SHEAR LOCKING (1G10.0) \\ Only if INSHE = 1 ^^ +|NODES(8)|List of nodes
-|PARSHE| Shear locking coefficient ​∈ [0,1\\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements ​in flexion) \\ close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)+===== Results ===== 
-^INITIAL ORIENTATION OF LOCAL AXES (6G10.0\\ Only if tens of ILOAX = 1 or 3^^ +Cauchy stresses in global axes $\sigma_x,​\sigma_y,​\sigma_z,​\sigma_{xy},​\sigma_{xz},​\sigma_{yz}$ 
-|e<​sub>​1</​sub>​(x)|coordinate ​of e<​sub>​1</​sub>​ along e<​sub>​x</​sub>​| + 
-|e<​sub>​1</​sub>​(y)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​y</​sub>| +===== Order of the integration points ===== 
-|e<​sub>​1</​sub>​(z)|coordinate ​of e<​sub>​1</​sub>​ along e<​sub>​z</​sub>| +Starting from negative coordinates,​ one varies: \\ 
-|e<​sub>​2</​sub>​(x)|coordinate ​of e<​sub>​2</​sub>​ along e<​sub>​x</​sub>​+  - the ξ 
-|e<​sub>​2<​/sub>(y)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​y</​sub>​+  - the η 
-|e<​sub>​2</​sub>​(z)|coordinate ​of e<​sub>​2</​sub>​ along e<​sub>​z</​sub>​+  - the ζ 
-|Note: These vectors are normalized after reading but should be orthogonal: \\ e<​sub>​1</​sub>​ • e<​sub>​2</​sub> ​e<​sub>​1</​sub>​(x) * e<​sub>​2</​sub>​(x) ​e<​sub>​1</​sub>​(y) * e<​sub>​2</​sub>​(y) ​e<​sub>​1</​sub>​(z) * e<​sub>​2</​sub>​(z) ​= 0|| +Example for 8 IP: 
-^INITIAL ORIENTATION OF LOCAL AXES (1G10.0) \\ Only if tens of ILOAX 2 or 4^^ +  - ξ = -0,57; η = -0,57; ζ = -0,57 
-|THETA| Angle between e<​sub>​1</​sub>​ and e<​sub>​x</​sub>​ in degrees| +  - ξ = -0,57; η = -0,57; ζ = +0,57 
-^DEFINITION OF THE ELEMENTS (2I5/​8I5/​6G10)^^ +  - ξ = -0,57; η = +0,57; ζ -0,57 
-|NINTE| Number of integration points (124 or 8) \\ if NINTE 1add 40 to MVARI compared to maximum required by laws | +  - ξ = -0,57; η +0,57; ζ = +0,57 
-|LMATE| Number of the material law| +  - ξ = +0,57; η = -0,57; ζ = -0,57 
-|NODES(8)| List of nodes| +  - ξ = +0,57; η = -0,57; ζ = +0,57 
-|SIG0(6)| List of initial stresses (Only if ISIG0=1)|+  - ξ = +0,57; η = +0,57; ζ -0,57 
 +  - ξ +0,57; η = +0,57; ζ = +0,57
  
elements/ssh3d.1553618267.txt.gz · Last modified: 2020/08/25 15:34 (external edit)