User Tools

Site Tools


elements:plxls

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
elements:plxls [2019/03/01 11:53]
admin created
elements:plxls [2020/08/25 15:46] (current)
Line 1: Line 1:
-====== PLXLS element ​====== +====== PLXLS ====== 
-Plane state or axisymmetrical+ 
 + 
 +===== Description ===== 
 + 
 +Plane state or axisymmetrical ​element \\ 
 +For the axisymmetrical element, the axis of symmetry must be the Y axis. \\ 
 +The element is defined by 3, 4, 6, or 8 nodes (see Input file).\\ 
 +For the generalised plane state, 8 nodes of the plane must be defined; the ninth is automatically the last one of the NODES section. \\ 
 + 
 +The 4 nodes elements are not of very good quality:  
 +  * With 1 integration point, hourglass modes may appear 
 +  * With 4 integration points, locking (shear or volumetric) can occur. 
 +{{ :​elements:​plxls.png?​350|}} 
 +Element type: 9 \\ 
 +Implemented by: J.P. Radu & J.D. Barnichon (1996) 
 + 
 + 
 + 
 +==== Files ==== 
 +Prepro: PLXLSA.F \\ 
 +Lagamine: PLXLSB.F 
 + 
 +===== Input file ===== 
 + 
 +==== 1 - Title ==== 
 +^(A5)^^ 
 +|TITLE|"​PLXLS"​ in columns 1 to 5| 
 + 
 +==== 2 - Control ==== 
 +^ (3I5) ^^ 
 +|NELEM| Number of elements | 
 +|ISPMAS|0 = nothing| 
 +|:::|1 = if density taken into account (if and only if NTANA=-1)| 
 +|INSIG| 0 if no initial stresses| 
 +|:::| 1 or 2 if initial stresses| 
 +|:::| 3 or 4 if residual stresses in cylinder| 
 + 
 +==== 3 - Density (dynamic analysis) ==== 
 +__Only if ISPMAS = 1__ 
 +^(1G10.0)^^ 
 +|SPEMAS|Density| 
 + 
 +==== 4 - Initial stresses ​ ==== 
 +__Only if INSIG > 0__ 
 +=== Case 1: INSIG = 1 or 2 === 
 + 
 +If INSIG=1: $\sigma_y=\sigma_{y0}+yd\sigma_{y}$ \\ If INSIG=2: $\sigma_y=min(\sigma_{y0}+yd\sigma_y,​0)$ 
 +^ (4G10.0)^^ 
 +|SIGY0| $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin| 
 +|DSIGY|Effective stress gradient along Y axis| 
 +|AK0X|$k_0$ ratio $\sigma_x/​\sigma_y$| 
 +|AK0Z|$k_0$ ratio $\sigma_z/​\sigma_y$ (if AK0Z=0, AK0Z=AK0X)| 
 + 
 +=== Case 2: INSIG = 3 or 4 === 
 +Generally, the radial stress $\sigma_r$ is assumed to be equal to zero. \\ 
 +The longitudinal and circumferencial stresses, $\sigma_L$ & $\sigma_T$, are the same and given, for instance, by the following graph as a function of the depth/​radius ratio: \\ 
 +{{  :​elements:​plxls_resstress.png ​ |}} 
 +^(6G10.0)^^ 
 +|XC|X coordinate of the axis| 
 +|YC|Y coordinate of the axis| 
 +|R1 |radius of the cylinder| 
 +|R2|radius corresponding to the maximum of tensile stress (point 2)| 
 +|SIGC|maximum compression (observed on the external face of the cylinder) \\ :!: must be NEGATIVE| 
 +|SIGT |maximum tensile stress (point 2)| 
 +The following values are computed automatically:​ 
 +|R3| radius corresponding to the point 3 \\ = R2 – ( R1 – R2 )| 
 +|SIGR3 | stress corresponding to the point 3 \\ = ½ ( SIGT + SIGC )| 
 +The stress on the axis is equal to zero. \\ 
 +At each integration point, the initial stress SIGRES is computed according to the radius from this integration point to the center of the cylinder. \\ 
 +In plane strain state (IANA=2) and generalised plane strain state (IANA=5), the stresses are the following ones: \\ 
 +  * SIGMA(1,​IPI) = $\sigma_x = \sigma_1 . cos² \alpha + \sigma_2 . sin² \alpha$ \\ 
 +  * SIGMA(2,​IPI) = $\sigma_y = \sigma_1 . sin² \alpha + \sigma_2 . cos² \alpha$ \\ 
 +  * SIGMA(3,​IPI) = $\tau = ½ (\sigma_2-\sigma_1) . sin 2\alpha$ \\ 
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES \\ 
 + 
 +where $\alpha$ is the angle between $\vec{r}$ and axis X and $\sigma_1$ & $\sigma_2$ the principal stresses in the plane (r,θ). In this case, $\sigma_1 = \sigma_{circ}$ = SIGRES and $\sigma_2 = \sigma_{rad}$ = ZERO. \\ 
 +In axisymmetric state (IANA=3): 
 +  * SIGMA(1,​IPI) = $\sigma_r$ = ZERO 
 +  * SIGMA(2,​IPI) = $\sigma_T$ = SIGRES 
 +  * SIGMA(3,​IPI) = $\tau$ = ZERO 
 +  * SIGMA(4,​IPI) = $\sigma_L$ = SIGRES 
 + 
 +==== 5 - Definition of the elements ==== 
 + 
 +^ (3I5/8I5) ^^ 
 +|NNODE| Number of nodes: 3, 4, 6, or 8| 
 +|NINTE| Number of integration points: 1, 3, 4, 7, or 9| 
 +|LMATE| Material | 
 +|NODES(NNODE)| List of nodes| 
 + 
 +===== Results ===== 
 +The mechanical Cauchy stresses are ordered as: $\sigma_x, \sigma_y, \tau_{xy}, \sigma_z$. These stresses are expressed in the global axis system. 
 + 
elements/plxls.1551437582.txt.gz · Last modified: 2020/08/25 15:34 (external edit)