Prepro: CSOL3A.F
Lagamine: CSOL3B.F
Title (A5) | |
---|---|
TITLE | “CSOL3” in the first 5 columns |
Control data (4I5) | |
NELEM | Number of elements |
ISPSMAS | = 0 → nothing = 1 → specific weight taken into account if and only if NTANA < 0 |
INSIG | = 0 → No initial stress = 1 or 2 → Initial stresses |
INBIO | = 0 → No Biot coefficient = 1 → Isotropic Biot coefficient = 2 → Anisotropic Biot coefficient Only for orthotropic mechanical law ORTHOPLA |
Specific mass - Only if ISPMAS = 1 (1G10.0) | |
SPEMA5 | Specific mass |
Initial stresses - Only if INSIG > 0 (4G10.0) | |
If INSIG=1: $\sigma_z=\sigma_{z0}+zd\sigma_{z}$ If INSIG=2: $\sigma_z=min(\sigma_{z0}+zd\sigma_z,0)$ |
|
SIGZ0 | $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin |
DSIGZ | Effective stress gradient along Y axis |
AK0X | $k_0$ ratio $\sigma_x/\sigma_z$ |
AK0Y | $k_0$ ratio $\sigma_y/\sigma_z$ (if AK0Y=0, AK0Y=AK0X) |
In the calculation of SIGZ0 and DSIGZ, the apparent density $\rho_a'$ must be taken into consideration: \[\rho_a'=\left[(1-n)\rho_s+n S_w\rho_w\right]-\rho_w\] With: $\rho_s$ the solid density (this corresponds to the density of a fictive sample where porosity would be equal to zero) $\rho_w$ the density of the fluid $n$ the porosity defined in the flow law related to this element $S_w$ the fluid saturation, ∈ [0,1] |
|
Biot coefficient - Only if INBIO = 1 (1G10.0) | |
CBIOT | Biot coefficient |
Definition of the elements (6I5/14I5) | |
NNODE | Number of nodes of the brick: 8, 16, 20, 24, 32, or 4 for the tetrahedron |
NPI(1) | Number of integration points in each direction |
NPI(2) | |
NPI(3) | |
LMAT1 | Mechanical law |
LMAT2 | Flow law |
NODES | List of nodes |
$\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz},f_x,f_y,f_z,f_{stored}$ In global axes