This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
elements:csol2 [2019/09/04 17:45] helene created |
elements:csol2 [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 4: | Line 4: | ||
{{ :elements:plxnt.png?400|}} | {{ :elements:plxnt.png?400|}} | ||
Coupled mechanical-flow analysis in large deformations. \\ | Coupled mechanical-flow analysis in large deformations. \\ | ||
+ | \\ | ||
+ | Type: 203 \\ | ||
\\ | \\ | ||
The element is defined by 3, 4, 6, 8, 15 or 25 nodes indicated in NODES in the order indicated in the figure. \\ | The element is defined by 3, 4, 6, 8, 15 or 25 nodes indicated in NODES in the order indicated in the figure. \\ | ||
Line 84: | Line 86: | ||
\end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$ \\ | \end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$ \\ | ||
Adopting the micro-homogeneity and micro-isotropy assumptions, in which the bulk modulus of the solid phase Ks is isotropic, the Biot’s coefficient can be expressed as: | Adopting the micro-homogeneity and micro-isotropy assumptions, in which the bulk modulus of the solid phase Ks is isotropic, the Biot’s coefficient can be expressed as: | ||
- | \[b_{11}=1-\frac{C^e_{1111}+C^e_{1122}+C^e_{1133}}{3K_s}=1-\frac{1-\nu_{23}\nu_{32}+\nu_{21}+\nu_{31}\nu_{23}+\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3det3K_s} \] | + | \[b_{11}=1-\frac{C^e_{1111}+C^e_{1122}+C^e_{1133}}{3K_s}=1-\frac{1-\nu_{23}\nu_{32}+\nu_{21}+\nu_{31}\nu_{23}+\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3\det{3K_s}} \\ |
+ | b_{22}=1-\frac{C^e_{2211}+C^e_{2222}+C^e_{2233}}{3K_s}=1-\frac{\nu_{12}+\nu_{13}\nu_{32}+1-\nu_{13}\nu_{31}+\nu_{32}+\nu_{31}\nu_{12}}{E_1E_3\det{3K_s}} \\ | ||
+ | b_{33}=1-\frac{C^e_{3311}+C^e_{3322}+C^e_{3333}}{3K_s}=1-\frac{\nu_{13}+\nu_{23}\nu_{12}+\nu_{23}+\nu_{21}\nu_{13}+1-\nu_{21}\nu_{12}}{E_1E_2\det{3K_s}} \] | ||
+ | For cross anisotropy, let us consider ($e_1$,$e_2$) as the isotropic plane (bedding plane for sedimentary rocks) and $e_3$ the normal to this plane. The subscripts ${\parallel}$ and $\perp$ indicates, respectively, the direction parallel to bedding and perpendicular to bedding. | ||
+ | \[{E_1=E_2=E_{\parallel}}\quad , \quad {E_3=E_{\perp}}\] | ||
+ | \[\frac{\nu_{\perp\parallel}}{E_{\perp}}=\frac{\nu_{\parallel\perp}}{E_{\parallel}}\] | ||
+ | Biot's coefficients become: | ||
+ | \[b_{11}=b_{22}=b_{\parallel\parallel}=1-\frac{1+\nu_{\parallel\parallel}+\nu_{\parallel\parallel}\nu_{\perp\parallel}+\nu_{\perp\parallel}}{E_{\parallel}E_{\perp}\det{3K_s}} \\ | ||
+ | b_{33}=b_{\perp\perp}=1-\frac{1-\nu_{\parallel\parallel}^2+2\nu_{\parallel\perp}+2\nu_{\parallel\perp}\nu_{\parallel\parallel}}{E_{\parallel}E_{\parallel}\det 3K_s} \\ | ||
+ | \det=\frac{1-\nu_{\parallel\parallel}^2-2\nu_{\perp\parallel}\nu_{\parallel\perp}(1+\nu_{\parallel\parallel})}{E_{\parallel}E_{\parallel}E_{\perp}} \] | ||
+ | with identical value in the isotropic plane. For isotropy, Biot’s coefficients reduce to $b_{ij}=b\delta_{ij}$ | ||
+ | leading to $b_{11}=b_{22}=b_{33}=b$. In that case, use INBIO = 1. \\ \\ | ||
+ | __Remark:__ | ||
+ | * The anisotropy of Biot’s coefficients can only be used with ISOL=9 (see appendix) and [[laws:orthopla|ORTHOPLA]]. | ||
+ | * When variation of the solid density and of the material porosity is taken into account (see flow law), they depend on the mean effective stress $\sigma'=\sigma+b\theta(S_r)p$, which is expressed as a function of a generalized Biot’s coefficient $b=\frac{b_{ii}}{3}$ . The latter is linked to a generalized drained bulk modulus $K_0=\frac{C^e_{iijj}}{9}$ by the relation $b=1-\frac{K_0}{K_s}$. | ||
+ | |||
+ | ^Definition of the elements (6I5/16I5(/9I5)) ^^ | ||
+ | |NNODM|Number of nodes for the mechancial description: 3, 4, 6, 8, 15, or 25| | ||
+ | |NINTM|Number of integration point (1, 3, 4, 7, 9, 12, or 16) for the mechanical description| | ||
+ | |LMAT1|Mechanical material| | ||
+ | |NNODP|Number of nodes for the flow description: 3, 4, 6, 8, 15, or 25| | ||
+ | |NINTP|Number of integration points (1, 3, 4, 7, 9, 12, or 16) for the flow description \\ Must be equal to NINTM| | ||
+ | |LMAT2|Flow material| | ||
+ | |NODES(NNODEM)|List of nodes| | ||
+ | |||
+ | ===== Results ===== | ||
+ | * Stresses (global axes): $\sigma_x$, $\sigma_y$, $\sigma_{xy}$, $f_x$, $f_y$, $f_{stored}$, 0 | ||
+ | * Internal variables: Internal variables of the mechanical law + internal variables of the flow law |