User Tools

Site Tools


elements:csol2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
elements:csol2 [2019/09/04 17:45]
helene created
elements:csol2 [2020/08/25 15:46] (current)
Line 4: Line 4:
 {{  :​elements:​plxnt.png?​400|}} {{  :​elements:​plxnt.png?​400|}}
 Coupled mechanical-flow analysis in large deformations. \\ Coupled mechanical-flow analysis in large deformations. \\
 +\\
 +Type: 203 \\
 \\ \\
 The element is defined by 3, 4, 6, 8, 15 or 25 nodes indicated in NODES in the order indicated in the figure. \\ The element is defined by 3, 4, 6, 8, 15 or 25 nodes indicated in NODES in the order indicated in the figure. \\
Line 84: Line 86:
 \end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$ \\ \end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$ \\
 Adopting the micro-homogeneity and micro-isotropy assumptions,​ in which the bulk modulus of the solid phase Ks is isotropic, the Biot’s coefficient can be expressed as: Adopting the micro-homogeneity and micro-isotropy assumptions,​ in which the bulk modulus of the solid phase Ks is isotropic, the Biot’s coefficient can be expressed as:
-\[b_{11}=1-\frac{C^e_{1111}+C^e_{1122}+C^e_{1133}}{3K_s}=1-\frac{1-\nu_{23}\nu_{32}+\nu_{21}+\nu_{31}\nu_{23}+\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3det3K_s} \]+\[b_{11}=1-\frac{C^e_{1111}+C^e_{1122}+C^e_{1133}}{3K_s}=1-\frac{1-\nu_{23}\nu_{32}+\nu_{21}+\nu_{31}\nu_{23}+\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3\det{3K_s}} \\ 
 +b_{22}=1-\frac{C^e_{2211}+C^e_{2222}+C^e_{2233}}{3K_s}=1-\frac{\nu_{12}+\nu_{13}\nu_{32}+1-\nu_{13}\nu_{31}+\nu_{32}+\nu_{31}\nu_{12}}{E_1E_3\det{3K_s}} \\ 
 +b_{33}=1-\frac{C^e_{3311}+C^e_{3322}+C^e_{3333}}{3K_s}=1-\frac{\nu_{13}+\nu_{23}\nu_{12}+\nu_{23}+\nu_{21}\nu_{13}+1-\nu_{21}\nu_{12}}{E_1E_2\det{3K_s}} \] 
 +For cross anisotropy, let us consider ($e_1$,​$e_2$) as the isotropic plane (bedding plane for sedimentary rocks) and $e_3$ the normal to this plane. The subscripts ${\parallel}$ and $\perp$ indicates, respectively,​ the direction parallel to bedding and perpendicular to bedding.  
 +\[{E_1=E_2=E_{\parallel}}\quad , \quad {E_3=E_{\perp}}\] 
 +\[\frac{\nu_{\perp\parallel}}{E_{\perp}}=\frac{\nu_{\parallel\perp}}{E_{\parallel}}\] 
 +Biot's coefficients become: 
 +\[b_{11}=b_{22}=b_{\parallel\parallel}=1-\frac{1+\nu_{\parallel\parallel}+\nu_{\parallel\parallel}\nu_{\perp\parallel}+\nu_{\perp\parallel}}{E_{\parallel}E_{\perp}\det{3K_s}} \\ 
 +b_{33}=b_{\perp\perp}=1-\frac{1-\nu_{\parallel\parallel}^2+2\nu_{\parallel\perp}+2\nu_{\parallel\perp}\nu_{\parallel\parallel}}{E_{\parallel}E_{\parallel}\det 3K_s} \\  
 +\det=\frac{1-\nu_{\parallel\parallel}^2-2\nu_{\perp\parallel}\nu_{\parallel\perp}(1+\nu_{\parallel\parallel})}{E_{\parallel}E_{\parallel}E_{\perp}} \] 
 +with identical value in the isotropic plane. For isotropy, Biot’s coefficients reduce to $b_{ij}=b\delta_{ij}$ 
 +leading to $b_{11}=b_{22}=b_{33}=b$. In that case, use INBIO = 1. \\ \\ 
 +__Remark:​__ 
 +  * The anisotropy of Biot’s coefficients can only be used with ISOL=9 (see appendix) and [[laws:​orthopla|ORTHOPLA]]. 
 +  * When variation of the solid density and of the material porosity is taken into account (see flow law), they depend on the mean effective stress $\sigma'​=\sigma+b\theta(S_r)p$,​ which is expressed as a function of a generalized Biot’s coefficient $b=\frac{b_{ii}}{3}$ . The latter is linked to a generalized drained bulk modulus $K_0=\frac{C^e_{iijj}}{9}$ by the relation $b=1-\frac{K_0}{K_s}$. 
 + 
 +^Definition of the elements (6I5/​16I5(/​9I5)) ^^ 
 +|NNODM|Number of nodes for the mechancial description:​ 3, 4, 6, 8, 15, or 25| 
 +|NINTM|Number of integration point (1, 3, 4, 7, 9, 12, or 16) for the mechanical description| 
 +|LMAT1|Mechanical material| 
 +|NNODP|Number of nodes for the flow description:​ 3, 4, 6, 8, 15, or 25| 
 +|NINTP|Number of integration points (1, 3, 4, 7, 9, 12, or 16) for the flow description \\ Must be equal to NINTM| 
 +|LMAT2|Flow material| 
 +|NODES(NNODEM)|List of nodes| 
 + 
 +===== Results ===== 
 +  * Stresses (global axes): $\sigma_x$, $\sigma_y$, $\sigma_{xy}$,​ $f_x$, $f_y$, $f_{stored}$,​ 0 
 +  * Internal variables: Internal variables of the mechanical law + internal variables of the flow law
elements/csol2.1567611930.txt.gz · Last modified: 2020/08/25 15:34 (external edit)