User Tools

Site Tools


elements:blz3t

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:blz3t [2019/04/03 18:05]
laurent
elements:blz3t [2021/12/17 16:37] (current)
laurent
Line 1: Line 1:
-====== BLZ3T ======+====== BLZ3T/​BWD3T ​======
  
 ===== Description ===== ===== Description =====
  
-{{ :​elements:​blz3d.png?​300|}} 
-8 node large strain volumetric element with hourglass and locking control for thermo-mechanical analysis. \\ 
  
-Implemented by: XXXX  ​Zhu Yongyi, ​January 1992 +8 node large strain volumetric element with hourglass and locking control for thermo-mechanical analysis. \\ 
-Improved by: Lihong Zhang, ​200? (BWD3T version)+{{  :​elements:​blz3d.png?​300|}} \\ 
 +Implemented by: Zhu Yongyi, ​December 1991 \\  \\ 
 +Improved by: Lihong Zhang, ​May 2005 (BWD3T version)
  
 Type: 222 Type: 222
  
-Prepro: BLZ3TA.F ​               XXXXX Check\\ +Prepro: BLZ3TA.F \\ 
 Lagamine: BLZ3TB.F, BWD3TB.F\\ Lagamine: BLZ3TB.F, BWD3TB.F\\
  
Line 19: Line 19:
 ^CONTROL (5I5)^^ ^CONTROL (5I5)^^
 |NELEM ​ | Number of elements |  ​ |NELEM ​ | Number of elements |  ​
-|INDPP ​ |=0 if no weight | +|INDPP ​ |= 0 if no weight | 
-|:::    |=1 if weight taken into account | +|:::    |= 1 if weight taken into account | 
-|INSIG| = 0  initial stresses ​cannot be used.+|INSIG ​ |= 0  ​no initial stresses| 
-|INSHE ​ |=0 for automatic calculation of shear locking parameter| +|:::    |= 1 initial stresses ​computed from ferrostatic pressure (see below) ​
-|:::    |=1 if shear coefficient taken into account|+|INSHE ​ |= 0 for automatic calculation of shear locking parameter| 
 +|:::    |= 1 if shear coefficient taken into account ​(see below)|
 |:::    |=-1 for use of element BWD3T (only 1 integration point)| |:::    |=-1 for use of element BWD3T (only 1 integration point)|
-|ILOAX ​ |=0 for global axis computation \\ ☛ Objectivity must be verified in the material law (Jaumann correction) \\ ☛ No rotation of material axes| +|ILOAX ​ |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (Jaumann correction) \\ ☛ No rotation of material axes| 
-|:::|<0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| +|:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| 
-|:::|>0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes|+|:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes|
 |:::|units: \\ = 1 for rotations included in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| |:::|units: \\ = 1 for rotations included in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method|
 |:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​ (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| |:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​ (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element|
- +^Consideration of weight ​(5G10.0) \\ Only if INDPP = 1 ^^
-^CONSIDERATION OF WEIGHT ​(5G10.0) \\ Only if INDPP = 1 ^^+
 |WSPE(1)| = specific weight in X direction| |WSPE(1)| = specific weight in X direction|
 |WSPE(2)| = specific weight in Y direction| |WSPE(2)| = specific weight in Y direction|
Line 37: Line 37:
 |WSPE(4)| = constant heat source| |WSPE(4)| = constant heat source|
 |WSPE(5)| = density| ​ |WSPE(5)| = density| ​
-^CONSIDERATION OF SHEAR LOCKING ​(1G10.0) \\ Only if INSHE = 1 ^^+^Consideration of initial stresses from ferrostatic pressure (3G10.0) \\ Only if INSIG = 1 ^^ 
 +|GAMMA ​ | = specific weight| 
 +|TSOL   | = solidus temperature| 
 +|TLIQ   | = liquidus temperature| 
 +^Consideration of shear locking ​(1G10.0) \\ Only if INSHE = 1 ^^
 |PARSHE| Shear locking coefficient ∈ [0,1] \\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements in bending) \\ - close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)| |PARSHE| Shear locking coefficient ∈ [0,1] \\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements in bending) \\ - close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)|
-^INITIAL ORIENTATION OF LOCAL AXES (6G10.0) \\ Only if tens of ILOAX = 1 or 3^^+^Initial orientation of the local axes (6G10.0) \\ Only if tens of ILOAX = 1 or 3  \\ (only one line if tens of ILOAX = 1, repeated for each element if tens of ILOAX = 3)^^
 |e<​sub>​1</​sub>​(x)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​x</​sub>​| |e<​sub>​1</​sub>​(x)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​x</​sub>​|
 |e<​sub>​1</​sub>​(y)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​y</​sub>​| |e<​sub>​1</​sub>​(y)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​y</​sub>​|
Line 47: Line 51:
 |e<​sub>​2</​sub>​(z)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​z</​sub>​| |e<​sub>​2</​sub>​(z)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​z</​sub>​|
 |Note: These vectors are normalized after reading but should be orthogonal: \\ e<​sub>​1</​sub>​ • e<​sub>​2</​sub>​ = e<​sub>​1</​sub>​(x) * e<​sub>​2</​sub>​(x) + e<​sub>​1</​sub>​(y) * e<​sub>​2</​sub>​(y) + e<​sub>​1</​sub>​(z) * e<​sub>​2</​sub>​(z) = 0|| |Note: These vectors are normalized after reading but should be orthogonal: \\ e<​sub>​1</​sub>​ • e<​sub>​2</​sub>​ = e<​sub>​1</​sub>​(x) * e<​sub>​2</​sub>​(x) + e<​sub>​1</​sub>​(y) * e<​sub>​2</​sub>​(y) + e<​sub>​1</​sub>​(z) * e<​sub>​2</​sub>​(z) = 0||
-^INITIAL ORIENTATION OF LOCAL AXES (1G10.0) \\ Only if tens of ILOAX = 2 or 4^^+^Initial orientation of the local axes (1G10.0) \\ Only if tens of ILOAX = 2 or 4 \\ (only one line if tens of ILOAX = 2, repeated for each element if tens of ILOAX = 4)^^
 |THETA| Angle between e<​sub>​1</​sub>​ and e<​sub>​x</​sub>​ in degrees| |THETA| Angle between e<​sub>​1</​sub>​ and e<​sub>​x</​sub>​ in degrees|
-^DEFINITION OF THE ELEMENTS ​(4I5/​14I5)^^+^Definition of the elements ​(4I5/​14I5)^^
 |NINTE| Number of integration points (1, 2, 4 or 8) \\ Currently, only NINTE = 1 is available ! | |NINTE| Number of integration points (1, 2, 4 or 8) \\ Currently, only NINTE = 1 is available ! |
 |LMATE1| Number of the material mechanical law| |LMATE1| Number of the material mechanical law|
Line 56: Line 60:
 |NODES(8)| List of nodes| |NODES(8)| List of nodes|
  
-^RESULTS^^ +===== Results ===== 
-|$\sigma_x,​\sigma_y,​\sigma_z,​\sigma_{xy},​\sigma_{xz},​\sigma_{yz}$| + 
-$\sigma_v$ +$\sigma_x,​\sigma_y,​\sigma_z,​\sigma_{xy},​\sigma_{xz},​\sigma_{yz},​f_x,​f_y,​f_z,​f_{capacitif}$ In global axes 
-  * $\sigma_v=\Vert \underline{\sigma}-\underline{X} \Vert -R-\sigma_Y$+
elements/blz3t.1554307550.txt.gz · Last modified: 2020/08/25 15:33 (external edit)