User Tools

Site Tools


appendices:a15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a15 [2019/06/21 17:28]
helene [Step 3: Compute the norm of convergence CONVE]
appendices:a15 [2020/08/25 15:46] (current)
Line 100: Line 100:
  
 ==== Step 4: Check the convergence of the step ==== ==== Step 4: Check the convergence of the step ====
-The step is converged for the displacements if $CONVE \leq PRECD$ \\ +The step is converged for the displacements if $CONVE \leq PRECF$ \\ 
-For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<​sup>​-1</​sup>​ and PRECD=10<​sup>​-2</​sup>,​ the step is converged if: +For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<​sup>​-1</​sup>​ and PRECF=10<​sup>​-2</​sup>,​ the step is converged if: 
-\[\sqrt{\frac{UNOR(1)}{\max(DNOR(1),​COMPA(1)²)}} \leq PRECD \\ <=> \sqrt{\frac{UNOR(1)}{\max(DNOR(1),​10^{-2})}} \leq 10^{-2} \\ <​=> ​UNOR(1) \leq 10^{-4}*\max(DNOR(1),​10^{-2})\]+\[\sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),​COMPA(1)²)}{NRE(1)}}} \leq PRECF \\ <=> \sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),​10^{-2})}{NRE(1)}}} \leq 10^{-2} \\ <​=> ​\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{\max(RNOR(1),​10^{-2})}{NRE(1)}\]
  
-If $DNOR(1)=10^{-8}$,​ the step is converged if $UNOR(1) \leq 10^{-4}*10^{-2}=10^{-6}$ \\ +If $RNOR(1)=10^{-8}$,​ the step is converged if $\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{10^{-2}}{NRE(1)}=\frac{10^{-6}}{NRE(1)}$ \\ 
-If $DNOR(1)=10^{-1}$,​ the step is converged if $UNOR(1) \leq 10^{-4}*DNOR(1)=10^{-5}$ \\+If $RNOR(1)=10^{-1}$,​ the step is converged if $\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{RNOR(1)}{NRE(1)}=\frac{10^{-5}}{NRE(1)}$  \\
  
appendices/a15.1561130931.txt.gz · Last modified: 2020/08/25 15:33 (external edit)