This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
appendices:a15 [2019/06/21 17:28] helene [Step 3: Compute the norm of convergence CONVE] |
appendices:a15 [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 100: | Line 100: | ||
==== Step 4: Check the convergence of the step ==== | ==== Step 4: Check the convergence of the step ==== | ||
- | The step is converged for the displacements if $CONVE \leq PRECD$ \\ | + | The step is converged for the displacements if $CONVE \leq PRECF$ \\ |
- | For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<sup>-1</sup> and PRECD=10<sup>-2</sup>, the step is converged if: | + | For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<sup>-1</sup> and PRECF=10<sup>-2</sup>, the step is converged if: |
- | \[\sqrt{\frac{UNOR(1)}{\max(DNOR(1),COMPA(1)²)}} \leq PRECD \\ <=> \sqrt{\frac{UNOR(1)}{\max(DNOR(1),10^{-2})}} \leq 10^{-2} \\ <=> UNOR(1) \leq 10^{-4}*\max(DNOR(1),10^{-2})\] | + | \[\sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),COMPA(1)²)}{NRE(1)}}} \leq PRECF \\ <=> \sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),10^{-2})}{NRE(1)}}} \leq 10^{-2} \\ <=> \frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{\max(RNOR(1),10^{-2})}{NRE(1)}\] |
- | If $DNOR(1)=10^{-8}$, the step is converged if $UNOR(1) \leq 10^{-4}*10^{-2}=10^{-6}$ \\ | + | If $RNOR(1)=10^{-8}$, the step is converged if $\frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{10^{-2}}{NRE(1)}=\frac{10^{-6}}{NRE(1)}$ \\ |
- | If $DNOR(1)=10^{-1}$, the step is converged if $UNOR(1) \leq 10^{-4}*DNOR(1)=10^{-5}$ \\ | + | If $RNOR(1)=10^{-1}$, the step is converged if $\frac{FNOR(1)}{NFO(1)} \leq 10^{-4}*\frac{RNOR(1)}{NRE(1)}=\frac{10^{-5}}{NRE(1)}$ \\ |