User Tools

Site Tools


appendices:a15

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a15 [2019/06/21 17:18]
helene
appendices:a15 [2020/08/25 15:46] (current)
Line 89: Line 89:
 The computation is performed as shown in the table below: The computation is performed as shown in the table below:
 ^  NTNOR  ^  COMPA(i) ≤ 0  ^  COMPA(i) > 0  ^ ^  NTNOR  ^  COMPA(i) ≤ 0  ^  COMPA(i) > 0  ^
-|  0  |\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{UNOR(i)}{\max(DNOR(i),​COMPA(i)²)}} \]|\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{UNOR(i)}{COMPA(i)²}} \]| +|  0  |\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{\max\left(\frac{RNOR(i)}{NRE(i)},\frac{COMPA(i)²}{NRE(i)}\right)}} \]|\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{COMPA(i)²}} \]| 
-|  1 or 2  |\[\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{UNOR(i)}{\max(DNOR(i),​-COMPA(i))} \]|\[\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{UNOR(i)}{COMPA(i)} \]|+|  1 or 2  |\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{\max\left(\frac{RNOR(i)}{NRE(i)},\frac{-COMPA(i)}{NRE(i)}\right)}} \]|\[\sqrt{\frac{1}{NDIM} \displaystyle\sum_{i=1}^{NDIM} \frac{\frac{FNOR(i)}{NFO(i)}}{COMPA(i)}} \]|
  
-Remark: the norm can be absolute for some dimensions and relative for others, in which case the formula ​need to be adapted. This will be clearer with some examples… \\+Remark: the norm can be absolute for some dimensions and relative for others, in which case the formula ​needs to be adapted. This will be clearer with some examples… \\
 \\ \\
 For 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=0: For 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=0:
-\[CONVE=\sqrt{\frac{UNOR(1)}{DNOR(1)}}\]+\[CONVE=\sqrt{\frac{\frac{FNOR(i)}{NFO(i)}}{\frac{RNOR(i)}{NRE(i)}}}\]
 For 3D shell analysis (NTANA = ±8) with NTNOR=0, COMPA(1)<​0 and COMPA(3)>​0:​ For 3D shell analysis (NTANA = ±8) with NTNOR=0, COMPA(1)<​0 and COMPA(3)>​0:​
-\[\sqrt{\frac{1}{2} \left(\frac{UNOR(1)}{\max(DNOR(1),​COMPA(1)²)} +\frac{UNOR(3)}{COMPA(3)²}\right)} \]+\[ CONVE=\sqrt{\frac{1}{2} \left( \frac{\frac{FNOR(1)}{NFO(1)}}{\max\left(\frac{RNOR(1)}{NRE(1)},\frac{COMPA(1)²}{NRE(1)}\right)} +\frac{\frac{FNOR(3)}{NFO(3)}}{COMPA(3)²}\right)} \]
  
 ==== Step 4: Check the convergence of the step ==== ==== Step 4: Check the convergence of the step ====
-The step is converged for the displacements if $CONVE \leq PRECD$ \\ +The step is converged for the displacements if $CONVE \leq PRECF$ \\ 
-For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<​sup>​-1</​sup>​ and PRECD=10<​sup>​-2</​sup>,​ the step is converged if: +For example, for 3D analysis (NTANA = ±2) with NTNOR=0 and COMPA(1)=-10<​sup>​-1</​sup>​ and PRECF=10<​sup>​-2</​sup>,​ the step is converged if: 
-\[\sqrt{\frac{UNOR(1)}{\max(DNOR(1),​COMPA(1)²)}} \leq PRECD \\ <=> \sqrt{\frac{UNOR(1)}{\max(DNOR(1),​10^{-2})}} \leq 10^{-2} \\ <​=> ​UNOR(1) \leq 10^{-4}*\max(DNOR(1),​10^{-2})\]+\[\sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),​COMPA(1)²)}{NRE(1)}}} \leq PRECF \\ <=> \sqrt{\frac{\frac{FNOR(1)}{NFO(1)}}{\frac{\max(RNOR(1),​10^{-2})}{NRE(1)}}} \leq 10^{-2} \\ <​=> ​\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{\max(RNOR(1),​10^{-2})}{NRE(1)}\]
  
-If $DNOR(1)=10^{-8}$,​ the step is converged if $UNOR(1) \leq 10^{-4}*10^{-2}=10^{-6}$ \\ +If $RNOR(1)=10^{-8}$,​ the step is converged if $\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{10^{-2}}{NRE(1)}=\frac{10^{-6}}{NRE(1)}$ \\ 
-If $DNOR(1)=10^{-1}$,​ the step is converged if $UNOR(1) \leq 10^{-4}*DNOR(1)=10^{-5}$ \\+If $RNOR(1)=10^{-1}$,​ the step is converged if $\frac{FNOR(1)}{NFO(1)} ​\leq 10^{-4}*\frac{RNOR(1)}{NRE(1)}=\frac{10^{-5}}{NRE(1)}$  \\
  
appendices/a15.1561130337.txt.gz · Last modified: 2020/08/25 15:33 (external edit)