This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
laws:zdmg [2019/04/08 16:47] ehssen [Meaning] |
laws:zdmg [2020/08/25 15:46] (current) |
||
|---|---|---|---|
| Line 5: | Line 5: | ||
| - | Implemented by: Zhu Yongui, 1992 \\ Modified by: Sylvie Castagne, 1997 \\ Ehssen Betaieb, 2019 | + | Implemented by: Zhu Yongui, 1992 \\ Improved by: Sylvie Castagne, 1997 \\ Ehssen Betaieb, 2019 |
| ==== The model ==== | ==== The model ==== | ||
| Line 35: | Line 35: | ||
| ==== Integer parameters ==== | ==== Integer parameters ==== | ||
| - | ^(I5)^^ | + | ^Line 1 (8I5)^^ |
| |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step| | |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step| | ||
| - | |NPOINT| = -1 Law described by parameters (LUDWIK) \\ __**LUDWIK law:**__ SIG = SIGY + AKP*(EPSP∗∗ANP)))| | + | |NPOINT| = -2 Law described by parameters (SWIFT) \\ __**SWIFT law:**__ SIG = AKP*(EPSP + EPS0)∗∗ANP| |
| + | |:::| = -1 Law described by parameters (LUDWIK) \\ __**LUDWIK law:**__ SIG = SIGY + AKP*(EPSP∗∗ANP)| | ||
| |:::| = 0 Law described by parameters (VOCE) \\ __**VOCE law :**__ SIG = SIGY + AKP*(1-EXP(-ANP*EPSP))| | |:::| = 0 Law described by parameters (VOCE) \\ __**VOCE law :**__ SIG = SIGY + AKP*(1-EXP(-ANP*EPSP))| | ||
| |:::| > 0 Law described by points| | |:::| > 0 Law described by points| | ||
| Line 51: | Line 52: | ||
| ==== Real parameters ==== | ==== Real parameters ==== | ||
| - | ^Line 1 (6G10.0)^^ | + | ^Line 1 (8G10.0)^^ |
| |ANU| POISSON's ratio| | |ANU| POISSON's ratio| | ||
| |DNMAX| = 0 For EP without damage| | |DNMAX| = 0 For EP without damage| | ||
| Line 65: | Line 66: | ||
| |VISCO| = Viscosity parameter (unit: time)| | |VISCO| = Viscosity parameter (unit: time)| | ||
| |THICK| = Thickness for plane state| | |THICK| = Thickness for plane state| | ||
| - | ^Line 2 (6G10.0)^^ | + | ^Line 2 (3G10.0)^^ |
| |POND| = Weight of volumetric energy| | |POND| = Weight of volumetric energy| | ||
| |:::| (= 0 by default)| | |:::| (= 0 by default)| | ||
| Line 72: | Line 73: | ||
| |FMULP| = Slope multiplicator| | |FMULP| = Slope multiplicator| | ||
| |:::| (= 1 by default)| | |:::| (= 1 by default)| | ||
| - | ^Line 3 (6G10.0) (If NPOINT= -1)^^ | + | ^Line 3 (2G10.0) - Repeated NPOINT times (if NPOINT>0)^^ |
| + | |EPS| = Strain for virgin by uniaxial testing| | ||
| + | |SIG| = Effective stress related to measured stress in tensile state| | ||
| + | |:::| :!: \\ 1) Effective stress-strain curve with hardening and softening phenomenon\\ 2) The first point must be : \\ $\sigma_{y}$ = The initial yiled limit \\ $\epsilon_{e}$ = $\sigma_{y}$ / E | | ||
| + | ^Line 3 + NPOINT (2G10.0) - Repeated NPOINT times (if NPOINT>0)^^ | ||
| + | |DSHEAR| = Deviatoric damage variable| | ||
| + | |B| = Damage strenghthening force (Mpa)|FIXME | ||
| + | |:::| :!: \\ 1) Possible for hardening and softening curve\\ 2) The first point must be : \\ $d$ = 0 \\ $B_{0}$ = The initial damage limit | | ||
| + | {{ :laws:dam-ep_fig1.png?500 |}} | ||
| + | {{ :laws:dam-ep_fig2.png?500 |}} | ||
| + | **If NPOINT= -2** | ||
| + | ^Line 3 (6G10.0)^^ | ||
| + | |E| = YOUNG's elastic modulus| | ||
| + | |EPS0| = EPS0| | ||
| + | |AKP| = SWIFT hardening coefficient| | ||
| + | |ANP| = SWIFT hardening exponent| | ||
| + | |B0| = Initial damage limit| | ||
| + | |DTG| = Damage tangent modulus| | ||
| + | **If NPOINT= -1** | ||
| + | ^Line 3 (6G10.0)^^ | ||
| |E| = YOUNG's elastic modulus| | |E| = YOUNG's elastic modulus| | ||
| |SIGY| = Lower yield limit| | |SIGY| = Lower yield limit| | ||
| Line 79: | Line 99: | ||
| |B0| = Initial damage limit| | |B0| = Initial damage limit| | ||
| |DTG| = Damage tangent modulus| | |DTG| = Damage tangent modulus| | ||
| - | ^Line 3 (6G10.0) (If NPOINT= 0)^^ | + | **If NPOINT= 0** |
| + | ^Line 3 (6G10.0) ^^ | ||
| |E| = YOUNG's elastic modulus| | |E| = YOUNG's elastic modulus| | ||
| |SIGY| = Lower yield limit| | |SIGY| = Lower yield limit| | ||
| Line 86: | Line 107: | ||
| |B0| = Initial damage limit| | |B0| = Initial damage limit| | ||
| |DTG| = Damage tangent modulus| | |DTG| = Damage tangent modulus| | ||
| - | |||
| - | ==== Reaped NPOINT times (2G10.0) (If NPOINT > 0)==== | ||
| - | |||
| - | |EPS| = Strain for virgin by uniaxial testing| | ||
| - | |SIG| = Effective stress related to measured stress in tensile state| | ||
| - | |:::| :!: \\ 1) Effective stress-strain curve with hardening and softening phenomenon\\ 2) The first point must be : \\ $\sigma_{y}$ = The initial yiled limit \\ $\epsilon_{e}$ = $\sigma_{y}$ / E | | ||
| - | |||
| - | |||
| - | ==== Reaped NPOINT times (2G10.0) (If NPOINT > 0)==== | ||
| - | |||
| - | |d| = Deviatoric damage variable| | ||
| - | |B| = Damage strenghthening force (Mpa)| | ||
| - | |:::| :!: \\ 1) Possible for hardening and softening curve\\ 2) The first point must be : \\ $d$ = 0 \\ $B_{0}$ = The initial damage limit | | ||
| ===== Stresses ===== | ===== Stresses ===== | ||
| ==== Number of stresses ==== | ==== Number of stresses ==== | ||