Table of Contents

WAPET / WAPET3

Description

Water-oil seepage-thermal coupled 2D-3D constitutive law for solid elements.

Implemented by: F. Collin, J.P. Radu, R. Charlier, 2000

The model

This law is used for water seepage - oil seepage - thermal coupled for non-linear analysis in 2D/3D porous media.

Files

Prepro: LWAPET.F
Lagamine: WAPET.F, WAPET3.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 173
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (7I5)
IANI = 0 : isotropic permeability case
≠ 0 : anisotropic permeability case
IKW Formulation index for $k_w$
IKP Formulation index for $k_p$
ISRW Formulation index for $S_w$
ITHERM Formulation index for $\Gamma_T$
IFORM = 1 : tangent formulation
\[\left\{\begin{array}{l} f_{we} = \dot{M}_w=\left(\dot{\varepsilon}_v.S_w+n.S_w.\frac{\dot{\rho}_w}{\xi_w}+n.\dot{S}_w\right)\rho_w \\ f_{pe} = \dot{M}_p=\left(\dot{\varepsilon}_v.S_p+n.S_p.\frac{\dot{\rho}_p}{\xi_p}+n.\dot{S}_p\right)\rho_p \end{array}\right.\]
= 0 : secant formulation
\[\left\{\begin{array}{l} f_{we} = \dot{M}_w = \frac{(n^BS_w^B\rho_w^B-n^AS_w^A\rho_w^A)}{\Delta t} \\ f_{pe} = \dot{M}_p = \frac{(n^BS_p^B\rho_p^B-n^AS_p^A\rho_p^A)}{\Delta t}\end{array}\right.\]
ICONV = 0 if no convectif term in the heat transport problem
= 1 else
ITEMOIN = 0 if analytic matrix
= 1 if semi-analytic matrix
IKRN = 1 if Kozeni-Karmann formulation

Real parameters : Permeabilities definition

The permeability $k_f$ is an intrinsic permeability ([L$^2$]) : \[k_{f, intrinsic} = K_f.\frac{\mu_f}{\rho_f.g}\]\[[L^2]=[LT]^{-1}\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\]

If IANI ≠ 0

Line 1 (4G10.0) - Repeat IANI times (I=1,IANI)
PERME(I) Soil anisotropic intrinsic permeability ($k_f$) in the direction I
COSX(I) Director cosinus of the direction I (in 3D state)
COSY(I) Director cosinus of the direction I (in 3D state)
COSZ(I) Director cosinus of the direction I (in 3D state)

Permeabilities in different directions can be input ($I_{max} = 10$). The effect of these permeabilities will be summed.

Else if IANI = 0

Line 1 (1G10.0)
PERME Soil isotropic intrinsic permeability ($k_f$)

Real parameters

Line 1 (4G10.0)
POROS Soil porosity (=$n$)
T0 Definition temperature (=$T_0$) [°K]
PW0 Definition liquid pression (=$p_{w,0}$) [Pa]
PP0 Definition oil pression (=$p_{p,0}$)  [Pa]
Line 2 (7G10.0)
VISCW0 Liquid dynamic viscosity (=$\mu_{w,0}$) [Pa.s]
ALPHW0 Liquid dynamic viscosity thermal coefficient (= $\alpha_w^T$) [°K$^{-1}$]
RHOW0Liquid density (=$\rho_{w,0}$) [$kg.m^{-3}$]
UXHIW0 Liquid compressibility coefficient (= 1/$\xi_w$) [Pa$^{-1}$] 
BETAW0 Liquid thermal expansion coefficient (=$\beta_w^T$) [°K$^{-1}$]
CONW0Liquid thermal conductivity (=$\Gamma_{w,0}$) [$W.m^{-1}$.°K$^{-1}$]
GAMW0 Liquid thermal conductivity coefficient (=$\gamma_w^T$) [ °K$^{-1}$]
Line 3 (2G10.0)
CPW0 Liquid specific heat (=$c_{p,wo}$) [J.kg$^{-1}$.°K$^{-1}$]
HEATW0 Liquid specific heat coefficient (=$H_w^T$) [°K$^{-1}$]
Line 4 (7G10.0)
VISCP0 Oil dynamic viscosity (=$\mu_{w,0}$) [Pa.s]
ALPHA0 Oil dynamic viscosity thermal coefficient (= $\alpha_w^T$) [°K$^{-1}$]
RHOP0 Oil density (=$\rho_{w,0}$) [kg.m$^{-3}$]
UXHIP0 Oil compressibility coefficient (= 1/$\xi_w$) [Pa$^{-1}$] 
BETAP0 Oil thermal expansion coefficient (=$\beta_w^T$) [°K$^{-1}$]
CONP0 Oil thermal conductivity (=$\Gamma_{w,0}$) [W.m$^{-1}$.°K$^{-1}$]
GAMP0Oil thermal conductivity coefficient (=$\gamma_w^T$) [°K$^{-1}$]
Line 5 (2G10.0)
CPP0 Oil specific heat (=$c_{p,wo}$) [J.kg$^{-1}$.°K$^{-1}$]
HEATP0 Oil specific heat coefficient (=$H_w^T$) [°K$^{-1}$]
Line 6 (5G10.0)
BETAS0 Solid thermal expansion coefficient (=$\beta^T_s$) [°K$^{-1}$]
CONS0 Solid thermal conduction (=$\Gamma_{s,0}$) [W.m$^{-1}$.°K$^{-1}$]
GAMS0Solid conduction coefficient (=$\gamma^T_s$) [°K$^{-1}$]
CPS0 Solid specific heat (=$c_{p,so}$) [J.kg$^{-1}$.°K$^{-1}$]
HEATS0 Solid specific heat coefficient (=$H_s^T$) [°K$^{-1}$]
Line 7 (3G10.0)
CKW1 1st coefficient of the function $k_{rw}$
CKW2 2nd coefficient of the function $k_{rw}$
CKW3 3rd coefficient of the function $k_{rw}$
Line 8 (2G10.0)
CKP1 1st coefficient of the function $k_{rp}$
CKP2 2nd coefficient of the function $k_{rp}$
Line 9 (7G10.0)
CSR1 1st coefficient of the function $S_w$
CSR2 2nd coefficient of the function $S_w$
CSR3 3rd coefficient of the function $S_w$
CSR4 4th coefficient of the function $S_w$
SRES Residual saturation degree (=$S_{res}$)
SRFIELD Field saturation degree (=$S_{r,field}$)
AIREV Air entry value [Pa]
Line 10 (4G10.0)
CLT1 1st coefficient of the function $\Gamma_T$
CLT2 2nd coefficient of the function $\Gamma_T$
CLT3 3rd coefficient of the function $\Gamma_T$
CLT4 4th coefficient of the function $\Gamma_T$
Line 11 (3G10.0)
KRMIN Minimum value of $k_r$
EXPM m Exponent of Kozeni-Karmann formulation
EXPNn Exponent of Kozeni-Karmann formulation

Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible : see Appendix 8

Stresses

Number of stresses

24 for both 2D and 3D state

Meaning

In 2D state :

SIG(1) Liquid velocity in the X direction (=$f_{wx}$)
SIG(2) Liquid velocity in the Y direction (=$f_{wy}$)
SIG(3) Liquid velocity stored (=$f_{we}$)
SIG(4) None
SIG(5) Oil velocity in the X direction (=$f_{ax}$)
SIG(6) Oil velocity in the Y direction (=$f_{ay}$)
SIG(7) Oil velocity stored (=$f_{ae}$)
SIG(8) None
SIG(9) Conductive heat flow in the X direction (=$f_{tx}$)
SIG(10) Conductive heat flow in the Y direction (=$f_{ty}$)
SIG(11) Energy accumulated by heat capacity (=$f_{te}$)
SIG(12) None
SIG(13 to 24) None

In 3D state:

SIG(1) Liquid velocity in the X direction (=$f_{wx}$)
SIG(2) Liquid velocity in the Y direction (=$f_{wy}$)
SIG(3) Liquid velocity in the Z direction (=$f_{wz}$)
SIG(4) Liquid velocity stored (=$f_{we}$)
SIG(5) Oil velocity in the X direction (=$f_{ax}$)
SIG(6) Oil velocity in the Y direction (=$f_{ay}$)
SIG(7) Oil velocity in the Z direction (=$f_{az}$)
SIG(8) Oil velocity stored (=$f_{ae}$)
SIG(9) Conductive heat flow in the X direction (=$f_{tx}$)
SIG(10) Conductive heat flow in the Y direction (=$f_{ty}$)
SIG(11) Conductive heat flow in the Z direction (=$f_{tz}$)
SIG(12) Energy accumulated by heat capacity (=$f_{te}$)
SIG(13 to 24) None

State variables

Number of state variables

16

List of state variables

Q(1) Water relative permeability (=$k_{rw}$)
Q(2) Oil relative permeability (=$k_{rp}$)
Q(3) Soil porosity (=$n$)
Q(4) Soil saturation degree (=$S_w$)
Q(5) Suction (=$p_c$=$p_a-p_w$)
Q(6) Water specific mass (=$\rho_w$)
Q(7) Oil specific mass (=$\rho_p$)
Q(8) “Pe number” = convective effect/conductive effect \[=\frac{\rho_f.c_f.T.\underline{q}}{\Gamma_{av}.\underline{grad}(T)}\]
Q(9) Water content (=$w$)
Q(10) Volume related to the Gauss point
Q(11) Porous volume related to the Gauss point
Q(12) Not used
Q(13) Water mass
Q(14) Oil mass
Q(15) PERMINT