====== WAPET / WAPET3 ====== ===== Description ===== Water-oil seepage-thermal coupled 2D-3D constitutive law for solid elements. \\ \\ Implemented by: F. Collin, J.P. Radu, R. Charlier, 2000 ==== The model ==== This law is used for water seepage - oil seepage - thermal coupled for non-linear analysis in 2D/3D porous media. ==== Files ==== Prepro: LWAPET.F \\ Lagamine: WAPET.F, WAPET3.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| YES| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 173| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (7I5) ^^ |IANI| = 0 : isotropic permeability case | |:::|≠ 0 : anisotropic permeability case | |IKW| Formulation index for $k_w$ | |IKP| Formulation index for $k_p$ | |ISRW| Formulation index for $S_w$ | |ITHERM| Formulation index for $\Gamma_T$ | |IFORM| = 1 : tangent formulation \\ \[\left\{\begin{array}{l} f_{we} = \dot{M}_w=\left(\dot{\varepsilon}_v.S_w+n.S_w.\frac{\dot{\rho}_w}{\xi_w}+n.\dot{S}_w\right)\rho_w \\ f_{pe} = \dot{M}_p=\left(\dot{\varepsilon}_v.S_p+n.S_p.\frac{\dot{\rho}_p}{\xi_p}+n.\dot{S}_p\right)\rho_p \end{array}\right.\] | |:::| = 0 : secant formulation \\ \[\left\{\begin{array}{l} f_{we} = \dot{M}_w = \frac{(n^BS_w^B\rho_w^B-n^AS_w^A\rho_w^A)}{\Delta t} \\ f_{pe} = \dot{M}_p = \frac{(n^BS_p^B\rho_p^B-n^AS_p^A\rho_p^A)}{\Delta t}\end{array}\right.\] | |ICONV| = 0 if no convectif term in the heat transport problem | |:::| = 1 else | |ITEMOIN| = 0 if analytic matrix | |:::| = 1 if semi-analytic matrix | |IKRN| = 1 if Kozeni-Karmann formulation | ==== Real parameters : Permeabilities definition ==== The permeability $k_f$ is an __intrinsic__ permeability ([L$^2$]) : \[k_{f, intrinsic} = K_f.\frac{\mu_f}{\rho_f.g}\]\[[L^2]=[LT]^{-1}\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\] __If IANI ≠ 0__ ^ Line 1 (4G10.0) - Repeat IANI times (I=1,IANI)^^ |PERME(I)| Soil anisotropic intrinsic permeability ($k_f$) in the direction I | |COSX(I)| Director cosinus of the direction I (in 3D state) | |COSY(I)| Director cosinus of the direction I (in 3D state) | |COSZ(I)| Director cosinus of the direction I (in 3D state) | Permeabilities in different directions can be input ($I_{max} = 10$). The effect of these permeabilities will be summed. __Else if IANI = 0__ ^ Line 1 (1G10.0) ^^ |PERME| Soil isotropic intrinsic permeability ($k_f$) | ==== Real parameters ==== ^ Line 1 (4G10.0) ^^^ |POROS| Soil porosity (=$n$) || |T0| Definition temperature (=$T_0$) | [°K] | |PW0| Definition liquid pression (=$p_{w,0}$) | [Pa] | |PP0| Definition oil pression (=$p_{p,0}$) | [Pa] | ^ Line 2 (7G10.0) ^^^ |VISCW0| Liquid dynamic viscosity (=$\mu_{w,0}$) | [Pa.s] | |ALPHW0| Liquid dynamic viscosity thermal coefficient (= $\alpha_w^T$) | [°K$^{-1}$] | |RHOW0|Liquid density (=$\rho_{w,0}$) |[$kg.m^{-3}$] | |UXHIW0| Liquid compressibility coefficient (= 1/$\xi_w$) | [Pa$^{-1}$] | |BETAW0| Liquid thermal expansion coefficient (=$\beta_w^T$) | [°K$^{-1}$] | |CONW0|Liquid thermal conductivity (=$\Gamma_{w,0}$) | [$W.m^{-1}$.°K$^{-1}$] | |GAMW0| Liquid thermal conductivity coefficient (=$\gamma_w^T$) | [ °K$^{-1}$] | ^ Line 3 (2G10.0) ^^^ |CPW0| Liquid specific heat (=$c_{p,wo}$) | [J.kg$^{-1}$.°K$^{-1}$] | |HEATW0| Liquid specific heat coefficient (=$H_w^T$) | [°K$^{-1}$] | ^ Line 4 (7G10.0) ^^^ |VISCP0| Oil dynamic viscosity (=$\mu_{w,0}$) | [Pa.s] | |ALPHA0| Oil dynamic viscosity thermal coefficient (= $\alpha_w^T$) | [°K$^{-1}$] | |RHOP0| Oil density (=$\rho_{w,0}$) | [kg.m$^{-3}$] | |UXHIP0| Oil compressibility coefficient (= 1/$\xi_w$) | [Pa$^{-1}$] | |BETAP0| Oil thermal expansion coefficient (=$\beta_w^T$) | [°K$^{-1}$] | |CONP0| Oil thermal conductivity (=$\Gamma_{w,0}$) | [W.m$^{-1}$.°K$^{-1}$] | |GAMP0|Oil thermal conductivity coefficient (=$\gamma_w^T$) | [°K$^{-1}$] | ^ Line 5 (2G10.0) ^^^ |CPP0| Oil specific heat (=$c_{p,wo}$) | [J.kg$^{-1}$.°K$^{-1}$] | |HEATP0| Oil specific heat coefficient (=$H_w^T$) | [°K$^{-1}$] | ^ Line 6 (5G10.0) ^^^ |BETAS0| Solid thermal expansion coefficient (=$\beta^T_s$) | [°K$^{-1}$] | |CONS0| Solid thermal conduction (=$\Gamma_{s,0}$) | [W.m$^{-1}$.°K$^{-1}$] | |GAMS0|Solid conduction coefficient (=$\gamma^T_s$) | [°K$^{-1}$] | |CPS0| Solid specific heat (=$c_{p,so}$) | [J.kg$^{-1}$.°K$^{-1}$] | |HEATS0| Solid specific heat coefficient (=$H_s^T$) | [°K$^{-1}$] | ^ Line 7 (3G10.0) ^^^ |CKW1| 1st coefficient of the function $k_{rw}$ || |CKW2| 2nd coefficient of the function $k_{rw}$ || |CKW3| 3rd coefficient of the function $k_{rw}$ || ^ Line 8 (2G10.0) ^^^ |CKP1| 1st coefficient of the function $k_{rp}$ || |CKP2| 2nd coefficient of the function $k_{rp}$ || ^ Line 9 (7G10.0) ^^^ |CSR1| 1st coefficient of the function $S_w$ || |CSR2| 2nd coefficient of the function $S_w$ || |CSR3| 3rd coefficient of the function $S_w$ || |CSR4| 4th coefficient of the function $S_w$ || |SRES| Residual saturation degree (=$S_{res}$) || |SRFIELD| Field saturation degree (=$S_{r,field}$) || |AIREV| Air entry value [Pa] || ^ Line 10 (4G10.0) ^^^ |CLT1| 1st coefficient of the function $\Gamma_T$ || |CLT2| 2nd coefficient of the function $\Gamma_T$ || |CLT3| 3rd coefficient of the function $\Gamma_T$ || |CLT4| 4th coefficient of the function $\Gamma_T$ || ^ Line 11 (3G10.0) ^^^ |KRMIN| Minimum value of $k_r$ || |EXPM| m Exponent of Kozeni-Karmann formulation || |EXPN|n Exponent of Kozeni-Karmann formulation || Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible : see [[appendices:a8|Appendix 8]] ===== Stresses ===== ==== Number of stresses ==== 24 for both 2D and 3D state \\ ==== Meaning ==== In 2D state : |SIG(1)| Liquid velocity in the X direction (=$f_{wx}$) | |SIG(2)| Liquid velocity in the Y direction (=$f_{wy}$) | |SIG(3)| Liquid velocity stored (=$f_{we}$) | |SIG(4)| None | |SIG(5)| Oil velocity in the X direction (=$f_{ax}$) | |SIG(6)| Oil velocity in the Y direction (=$f_{ay}$) | |SIG(7)| Oil velocity stored (=$f_{ae}$) | |SIG(8)| None | |SIG(9)| Conductive heat flow in the X direction (=$f_{tx}$) | |SIG(10)| Conductive heat flow in the Y direction (=$f_{ty}$) | |SIG(11)| Energy accumulated by heat capacity (=$f_{te}$) | |SIG(12)| None | |SIG(13 to 24)| None | In 3D state: |SIG(1)| Liquid velocity in the X direction (=$f_{wx}$) | |SIG(2)| Liquid velocity in the Y direction (=$f_{wy}$) | |SIG(3)| Liquid velocity in the Z direction (=$f_{wz}$) | |SIG(4)| Liquid velocity stored (=$f_{we}$) | |SIG(5)| Oil velocity in the X direction (=$f_{ax}$) | |SIG(6)| Oil velocity in the Y direction (=$f_{ay}$) | |SIG(7)| Oil velocity in the Z direction (=$f_{az}$) | |SIG(8)| Oil velocity stored (=$f_{ae}$) | |SIG(9)| Conductive heat flow in the X direction (=$f_{tx}$) | |SIG(10)| Conductive heat flow in the Y direction (=$f_{ty}$) | |SIG(11)| Conductive heat flow in the Z direction (=$f_{tz}$) | |SIG(12)| Energy accumulated by heat capacity (=$f_{te}$) | |SIG(13 to 24)| None | ===== State variables ===== ==== Number of state variables ==== 16 ==== List of state variables ==== |Q(1)| Water relative permeability (=$k_{rw}$) | |Q(2)| Oil relative permeability (=$k_{rp}$) | |Q(3)| Soil porosity (=$n$) | |Q(4)| Soil saturation degree (=$S_w$) | |Q(5)| Suction (=$p_c$=$p_a-p_w$) | |Q(6)| Water specific mass (=$\rho_w$) | |Q(7)| Oil specific mass (=$\rho_p$) | |Q(8)| "Pe number" = convective effect/conductive effect \[=\frac{\rho_f.c_f.T.\underline{q}}{\Gamma_{av}.\underline{grad}(T)}\] | |Q(9)| Water content (=$w$) | |Q(10)| Volume related to the Gauss point | |Q(11)| Porous volume related to the Gauss point | |Q(12)| Not used | |Q(13)| Water mass | |Q(14)| Oil mass | |Q(15)| PERMINT |