User Tools

Site Tools


laws:vmvp

This is an old revision of the document!


VMVP

Von Mises Visco-Plastic.

Description

3D isotropic viscoplastic damage law that enables the modeling of non-classical creep responses via Graham-Walles and a modified activation function-Norton viscosity function.

Numerical model

This law was implemented in the context of C.Rojas-Ulloa's PhD. project (01/2021-12/2025) on the modeling of the non-classical long-term creep response of Incoloy 800H (see (C.Rojas-Ulloa et al., 2024) for more details). This colaw is based in the work of Hélène Morch (CHAB, a von-Mises yield function combined with a Norton-type viscosity function, Kachanov-Lemaitre creep-fatigue damage and high flexibility for introducing parameters as $f(T)$). VMVP incorporates two new viscoplastic functions (Graham-Walles & AFN), a simple IfW creep-fatiogue damage formulation, and new parameter interpolation methods available for material parameters.

VMVP: formulation generalities

The yield surface is defined by the von-Mises yield criterion: an isotropic $J_{2}$-type function of the form:

$J_{2}(\underline{\tilde{\sigma}}-\underline{\mathbb{X}})=\Bigl[\frac{3}{2}(\underline{\tilde{S}}-\underline{\mathbb{X}}):(\underline{\tilde{S}}-\underline{\mathbb{X}})\Bigr]^{0.5}$

where $\underline{\tilde{\sigma}}$ is the effective stress tensor. It is calculated as function of the unitary damage $D$, $0 \leq D \leq 1$ as: $\underline{\tilde{\sigma}}=\underline{\sigma}\cdot (1-D)^{-1}$

$\underline{\tilde{S}}$ is the deviatoric stress tensor, calculated as:

$\underline{\tilde{S}} = \underline{\tilde{\sigma}}-\frac{1}{3}tr(\underline{\tilde{\sigma}})\underline{\mathbb{I}}$

The function $\Phi$ defining the yield criteiron is:
$\Phi = J_{2}(\underline{\tilde{\sigma}}-\underline{\mathbb{X}})-\sigma_{y}-R \leq 0$

where:
* $\sigma_{y}$ is the yield stress of the material.
* $R$ is the isotorpic hardening, calculated as the Voce iso. hardening law:
$\dot{R} = -b\cdot (Q-R)\cdot \dot{p} \hspace{1cm} \rightarrow \hspace{1cm} R(p)=Q\cdot (1-\exp(-b\cdot p))$
where $p$ is the equivalent plastic strain $(-)$, and $\dot{p}$ is the equivalent plastic strain rate $(s^{-1})$

Inheriting the classical Chaboche-type formulation, the backstress tensor $\underline{\mathbb{X}}$ is calculated as the sum of a total of $nAF$ user-defined Armstrong-Frederick (AF) backstress equations.
$\dot{\underline{\mathbb{X}}} = \displaystyle{\sum_{i=1}^{nAF}} \frac{2}{3}C_{i}\dot{\underline{p}} - \gamma_{i}\Bigl( \dot{\underline{\mathbb{X}}}_{i} - \dot{\underline{\mathbb{Y}}}_{i} \Bigr)\dot{p} - b_{i}J_{2}\Bigl( \underline{\mathbb{X}}_{i} \Bigr)^{r_{i}-1} \underline{\mathbb{X}}_{i} + \frac{1}{C_i}\frac{\partial C_{i}}{\partial T}\dot{T} \underline{\mathbb{X}}_{i} $

Within the $\sum$ term, from left to right:
The first term is a Swift-type kinematic hardening.
Here, $C_{i}$ is the only material constant, and $\dot{\underline{p}}$ is the plastic strain rate vector (Voigt notation in Lagamine).

The second term is intended to model the static recovery of the material.
Following the Chaboche formulation, it addresses terms for:
Mean stress evolution $\underline{\mathbb{Y}}$. Following Chaboche formulation and H. Morch's work, the mean-stress is conceived as the summation of a total of a user-defined number $j$ of terms $0 \leq j\leq i$. In its time-dependent variational form, the $j^{\text{th}}$ equation is calculated as:
$\dot{\underline{\mathbb{Y}}}_j=\alpha_{b_{j}}\cdot \Bigl( \frac{3}{2} Y_{\text{st}_{j}}\frac{\underline{\mathbb{X}}_{j}}{J_{2}(\underline{\mathbb{X}}_{j})} + \underline{\mathbb{Y}}_{j} \Bigr) J_{2}(\underline{\mathbb{X}}_{j})^{r_{j}-1} $
···
Strain memory surface $\gamma_{i}$. This Chaboche formulation is intended to model the non-masing behavior observed in certain Ni-based and martensitic alloys. Similarly, the total strain memory surface is the result of a sum of a user-defined number $k$ equations $k\geq 0$. The form of the $h^{\text{th}}$ equation in its variational (time-dependent) is:
$\dot{\gamma_{k}} = D_{\gamma_{k}}\Bigl( \gamma_{k}^{0} - \gamma_{k} \Bigr) \dot{p}$
where $D_{\gamma_{k}}$ is a material parameter, and the term $\gamma_{k}^{0}$ is a function of the form:
$\gamma_{k}^{0}=a_{\gamma_{k}} + b_{\gamma_{k}}\exp\bigl( -c_{\gamma_{k}}\text{q} \bigr)$
where $\text{q}$ is the norm of the equivalent plastic strain $p$ in the loading history $(\text{q} = \underline{p}:\underline{p})$.

The third term deals with the dynamic recovery of the material.
Here, $b_i$ and $r_i$ are user-defined material parameters.

The fourth term is made for non-isothermal plasticity effects.
This term is important in presence of thermal gradients $\dot{T}$, and if we introduce the parameter $C_i$ as function of temperature.

VMVP: viscoplasticity

As a viscoplastiv law, VMVP includes a total of 3 viscoplastic functions.

option ivp=1: Norton law
This is the classical Norton constitutive law, described as:
$\dot{p} = \langle \frac{\sigma_v}{K} \rangle ^{n}$
where:
· $K$ and $n$ are the drag stress and Norton exponent (material parameters).
· $\sigma_{v}$ is the overstress, defined as the stress resulting from the calculation of the yield function $\Phi=0$, i.e.:
$\sigma_{v} = J_{2}(\underline{\tilde{\sigma}}-\underline{\mathbb{X}}) - \sigma_{y}-R$

option ivp=2: Graham-Walles creep equations

This set of equations are intended to describe the total creep response as a summation of a total of $nvp$ user-defined number of individual functions, each of them representing different hardening/softening creep regimes. Each $l$ function is of the form:
$\dot{p} = \displaystyle{\sum_{l=1}^{nvp}} \Bigl[ K_{l}\exp{\Bigl(\frac{T}{C_l}\Bigr)} J_{2}(\underline{\tilde{\sigma}}-\underline{\mathbb{X}})^{n_l} p^{m_l} \Bigr] + |\dot{T}| K_{T} J_{2}(\underline{\sigma}) p^{m_T}$
where $K_{l}, C_{l}, n_{l}, m_{l}$ are user-defined material parameters for each $g$ creep equation, and $K_D, m_T$ are user-defined parameters for an additional creep-fatigue interaction term.


option ivp=4: AFN (Activation Function $\times$ Norton)

This equation is new, and was formulated after a thorough analysis on the creep response of Incoloy 800H under lows-tress and high-temperature loadings. It is is intended to follow the classical Norton behavior, where the material reaches a steady-state creep rate $p_{\text{ss}}$. However, the phenomena such as solid-solution hardening or particle-strengthening may induce an initial creep hardening effect where the material can reach a creep rate lower that that of the steady state. To address this initial hardening, a phenomenological temperature and stress-dependent activation function has been added. The form of AFN is:
$\exp \Bigl[ -a(1.05 + p - 0.001b)^{-c} \Bigr] \times \langle \frac{\sigma_v}{K} \rangle ^{n}$
Let us now walk you through the Activation Function particulars:
Activation Function. The Activation Function is of the form:
$\exp \Bigl[ -a(1.05 + p - 0.001b)^{-c} \Bigr]$
where $a, b, c$ are material parameters. Strictly speaking however, these are temperature and stress dependent functions. With all experimental and theoretical information available so far, we have reached the following mathematical formulations for each parameter:
$a(\sigma_v,T) = \frac{a_1}{1+\exp \bigl( \frac{\sigma_v - p_2}{a_3} \bigr)}$
$b(\sigma_v,T) = \frac{x_1}{1+\exp \bigl( \frac{p_2 - \sigma_v}{b_3} \bigr)} + b_4$
$c(\sigma_v,T) = \frac{c_1}{1+\exp \bigl( \frac{\sigma_v - p_2}{c_3} \bigr)}$
where $a_1, a_3, b_1, b_3, b_4, c_1, c_3$ are material parameters, and $p_2$ is a temperature-dependent function defined as an Arrhenius-type function:
$p_{2}(T) = p_{21} \Big[ 1 - p_{22} \exp \Big( \frac{T}{p_{23}} \Big)\Big]$
where $p_{21}, p_{22}, p_{23}$ are user-defined material parameters.

Input file

Parameters defining the type of constitutive law

Line 01; format (2I5, 60A1)
ILLaw number
ITYPE 271
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 02; format (9I5)
1:5TID=1 if parameters are given for linear interpolation at different temperatures
= 0 if not
6:10ntempif TID=1, ntemp defines the number of temperatures at which parameters are given
11:15ianisoth=1 if anisothermal loadings
= 0 otherwise
16:20MAXIT=maximum number of Newton-Raphson iterations within the colaw (25 default)
21:25nintv=Number of sub-intervals (substeps); if 0, no substeps
26:30ilcf indicator for low-cycle fatigue
31:35mat_interpindicator for interpolation method (1$\leq$mat_interp$\leq$5) for material parameters $(E, \nu)$
36:40tdilc_interpindicator for interpolation method (1$\leq$mat_interp$\leq$5) for temp. dilatation coefficient
41:45iso_interpindicator for interpolation method (1$\leq$mat_interp$\leq$5) for isotropic hardening parameters $(b, Q)$
Line 03; format (10I5)
1:5nAFXNumber of Armstrong-Fredericks equations used to define the back-stress $\underline{\mathbb{X}}$ (minimum value=1)
6:10NAFCNumber of Armstrong-Fredericks equations taking into account cyclic hardening
11:15NAFYNumber of Armstrong-Fredericks equations taking into account evolution of the mean stress
16:20iarrhID for interpolation method of AD equations
21:25ivpID for type of viscoplastic law
1=Norton law (after CHAB);
2=Graham-Walles; 4=AFN
26:30vpinterp ID for interpolation method for viscoplastic law parameters.
if ivp=2, vpinterp defines the number of Graham-Walles equations
31:35type_damID for damage type.
0=no damage;
1=uncoupled damage;
3=semi-coupled damage;
4=fully-coupled damage(not working yet)
36:40idamID for damage law.
1 = Kachanov(creep) + Lemaitre(fatigue) (after CHAB);
2 = IfW (PhD. thesis from Narayana K. Karthik, RWTH Aachen university)
41:45dam_interpID for interpolation of damage law parameters
46:50daminitID for damage initiation criterion

Real parameters

case TID = 0

Line 04 format
1:$x$$E$Young modulus (MPa)after mat_interp
Line 05
1:$x$$\nu$Poisson ratio (-) after mat_interp
Line 06
1:$x$$\alpha$Thermal dilatation coefficient (m/K)after mat_interp
Line 07
1:$x$$\sigma_y$Yield stress (MPa)after iso_interp
$x$+1:$x$+10$b$Hardening saturation rate (-)1G10.0
$x$+11:$x$+20$Q$Hardening saturation value (MPa)1G10.0
Kinematic hardening (Armstrong-Frederick);·······Lines 08:$m$
–> case iarrh=0; repeat for $i$=1,nAFX
1:10$C_i$Swift-type hardening term (MPa) 1G10.0
11:20$\gamma_i (-)$Static recovery term (-)1G10.0
21:30$b_i$Dynamic recovery term (-) 1G10.0
31:40$r_i$Dynamic recovery exponent (-) 1G10.0
–> case iarrh=1; repeat for $i$=1,nAFX
1:10$C_i (-)$ Swift-type hardening term (MPa)1G10.0
11:20$A_{\gamma_{i}}$Static recovery term; single Arrhenius fit:
$\gamma_i(T)=A_{\gamma_{i}}\cdot[1-B_{\gamma_{i}}\cdot exp(\frac{T}{C_{\gamma_{i}}})]$
1G10.0
21:30$B_{\gamma_{i}}$ 1G10.0
31:40$C_{\gamma_{i}}$ 1G10.0
41:50$b_i (-)$Dynamic recovery term (-)1G10.0
51:60$r_i (-)$Dynamic recovery exponent (-)1G10.0
–> case iarrh=2; repeat for $i$=1,nFA
Line 07$+2 \times i-1$
1:10$A_{C_{i}}$Swift-type hardening term (MPa); single Arrhenius fit:
$C_i(T)=A_{C_{i}}\cdot[1-B_{C_{i}}\cdot exp(\frac{T}{C_{C_{i}}})]$
1G10.0
11:20$B_{C_{i}}$ 1G10.0
21:30$C_{C_{i}}$ 1G10.0
31:40$A_{\gamma_{i}}$Static recovery term; single Arrhenius fit:
$\gamma_i(T)=A_{\gamma_{i}}\cdot[1-B_{\gamma_{i}}\cdot exp(\frac{T}{C_{\gamma_{i}}})]$
1G10.0
41:50$B_{\gamma_{i}}$ 1G10.0
51:60$C_{\gamma_{i}}$ 1G10.0
Line 07$+2\times i$
1:10$A_{b_{i}}$Dynamic recovery term (-); single Arrhenius fit:
$b_i(T)=A_{b_{i}}\cdot[1-B_{b_{i}}\cdot exp(\frac{T}{C_{b_{i}}})]$
1G10.0
11:20$B_{b_{i}}$ 1G10.0
21:30$C_{b_{i}}$ 1G10.0
31:40$r_i$Dynamic recovery exponent (-) 1G10.0
Cyclic hardening;·······Lines $m+1$:$n$
–> case iarrh=0 or iarrh=1; repeat for $j$=1,nAFC
1:10$D_{\gamma_{j}}$ Cyclic hardening parameter (-)1G10.0
11:20$a_{\gamma_{j}}$ Strain memory surface parameter (-)1G10.0
21:30$b_{\gamma_{j}}$ Strain memory surface parameter (-)1G10.0
31:40$c_{\gamma_{j}}$ Strain memory surface parameter (-)1G10.0
–> case iarrh=2; Single Arrhenius; repeat for $j$=1,nAFC
Line $n+2\times j-1$
1:10$A_{D_{\gamma_{j}}}$Cyclic hardening parameter (-); single Arrhenius fit:
$D_{\gamma_{j}}(T)=A_{D_{\gamma_{j}}}\times[1-B_{D_{\gamma_{j}}}\cdot \exp(\frac{T}{C_{D_{\gamma_{j}}}})]$
1G10.0
11:20$B_{D_{\gamma_{j}}}$ 1G10.0
21:30$C_{D_{\gamma_{j}}}$ 1G10.0
Line $n+2\times j$
1:10$B_{\gamma_{j}}$Double Arrhenius fit:
$(a_{\gamma_{j}} ,b_{\gamma_{j}} ,c_{\gamma_{j}})(T)=A_{(a,b,c)_{j}}\cdot[1-B_{\gamma_{j}}\cdot\exp(\frac{T}{C_{\gamma_{j}}} ) - D_{\gamma_{j}}\cdot \exp(\frac{T}{E_{\gamma_{j}}})]$

Parameter $A_{(a,b,c)_{j}}$ are different for each $(a_{\gamma_{j}} ,b_{\gamma_{j}} ,c_{\gamma_{j}})$ equation.
They are defined hereafter:
1G10.0
11:20$C_{\gamma_{j}}$1G10.0
21:30$D_{\gamma_{j}}$1G10.0
31:40$E_{\gamma_{j}}$1G10.0
41:50$A_{a_{j}}$Parameter $A_a$ for $a_{\gamma_{j}}$1G10.0
51:60$A_{b_{j}}$Parameter $A_b$ for $b_{\gamma_{j}}$ 1G10.0
61:70$A_{c_{j}}$Parameter $A_c$ for $c_{\gamma_{j}}$ 1G10.0
Mean stress evolution;·······Lines $n+1$:$n+$nAFY
–> case iarrh=0 or iarrh=1; repeat for $k$=1,nAFY
1:10$\alpha_{b,k}$Ratio of evolution of mean stress tensor $\underline{Y}_{k}$ 1G10.0
11:20$Y_{\text{st},k}$Saturation value of mean stress tensor $\underline{Y}_{k}$ 1G10.0
–> case iarrh=2; Single Arrhenius; repeat for $k$=1,nAFY
1:10$A_{\alpha_{b,k}}$Cyclic hardening parameter (-); single Arrhenius fit:
$\alpha_{b,k}(T)=A_{\alpha_{b,k}}\cdot[1-B_{\alpha_{b,k}}\cdot \exp(\frac{T}{C_{\alpha_{b,k}}})]$
1G10.0
11:20$B_{\alpha_{\text{b},k}}$ 1G10.0
21:30$C_{\alpha_{\text{b},k}}$ 1G10.0
31:40$A_{Y_{\text{st},k}}$Cyclic hardening parameter (-); single Arrhenius fit:
$Y_{\text{st},k}(T)=A_{Y_{\text{st},k}}\cdot[1-B_{Y_{\text{st},k}}\cdot \exp(\frac{T}{C_{Y_{\text{st},k}}})]$
1G10.0
41:50$B_{Y_{\text{st},k}}$ 1G10.0
51:60$C_{Y_{\text{st},k}}$ 1G10.0
Viscoplastic laws;·······Lines $n+$nAFY+1:$p$
–> case ivp=1: Simple Norton law
if (vp_interp=1) then:
1:10$K$Drag stress $(\text{MPa})$ 1G10.0
11:20$n$Exponent $(\text{-})$ 1G10.0
if (vp_interp=2) then:
1:10$A_K$Drag stress $(\text{MPa})$ ; single Arrhenius fit:
$K(T)=A_K\cdot[1-B_{K}\cdot \exp(\frac{T}{C_{K}})]$
1G10.0
11:20$B_K$ 1G10.0
21:30$C_K$ 1G10.0
31:40$A_n$Exponent $(\text{-})$ ; single Arrhenius fit:
$n(T)=A_n\cdot[1-B_{n}\cdot \exp(\frac{T}{C_{n}})]$
1G10.0
41:50$B_n$ 1G10.0
51:60$C_n$ 1G10.0
–> case ivp=2: Graham-Walles equations
for $l$=1,ivp: (here, ivp=number of G-W equations)
1:10$K_{l}$Constant of G-W creep equation $l$ $(-)$ 1G10.0
11:20$C_{l}$Temperature term of G-W creep equation $l$ $(ºC)$ 1G10.0
21:30$n_{l}$Stress exponent of G-W creep equation $l$ $(-)$ 1G10.0
31:40$m_{l}$Creep strain exponent of G-W creep equation $l$ $(-)$ 1G10.0
finally, Line $n+$nAFY$+$ivp$+1$
1:10$C_{T}$Temperature term of G-W creep-fatigue equation $(ºC)$ 1G10.0
11:20$K_{T}$Constant of G-W creep-fatigue equation $(-)$ 1G10.0
21:30$m_{T}$Creep strain exponent of G-W creep-fatigue equation $(-)$ 1G10.0
–> case ivp=4: AFN (Activation function $\times$ Norton equations)
if (vp_interp=1) then:
Line $n+$nAFY$+1$
1:10$a$$a$ parameter $(-)$ 1G10.0
11:20$b$$b$ parameter $(-)$ 1G10.0
21:30$c$$c$ parameter $(-)$ 1G10.0
Line $n+$nAFY$+2$
1:10$K$Drag stress $(\text{MPa})$ 1G10.0
11:20$n$Exponent $(\text{-})$ 1G10.0
if (vp_interp=2) then:
Line $n+$nAFY$+1$
1:10$a_{1}$- 1G10.0
11:20$p_{21}$ Parameter $p_{2}=f(T)$ common for all $a,b,c$ AF functions:
$p_{2}(T)=p_{21}\cdot [1-p_{22}\cdot \exp{(\frac{T}{p_{23}})}]$
1G10.0
21:30$p_{22}$1G10.0
31:40$p_{23}$1G10.0
41:50$a_{3}$- 1G10.0
Line $n+$nAFY$+2$
1:10$b_{1}$- 1G10.0
11:20$b_{3}$- 1G10.0
21:30$b_{4}$- 1G10.0
Line $n+$nAFY$+3$
1:10$c_{1}$- 1G10.0
11:20$c_{3}$- 1G10.0
Line $n+$nAFY$+4$
1:10$A_K$Drag stress $(\text{MPa})$ ; single Arrhenius fit:
$K(T)=A_K\cdot[1-B_{K}\cdot \exp(\frac{T}{C_{K}})]$
1G10.0
11:20$B_K$ 1G10.0
21:30$C_K$ 1G10.0
31:40$A_n$Exponent $(\text{-})$ ; single Arrhenius fit:
$n(T)=A_n\cdot[1-B_{n}\cdot \exp(\frac{T}{C_{n}})]$
1G10.0
41:50$B_n$ 1G10.0
51:60$C_n$ 1G10.0
Damage laws (only if dam_type$\geq$1);·······Lines $p+1$:$end$
Line $p+1$
1:10$h_\text{mD}$ Compression damage parameter $(-)$ 1G10.0
11:20$D_\text{Frac}$ Critical fracture damage $(-)$ 1G10.0
21:30$\tau$ Damping coefficient for controlling creep-fatigue damage evolution $(s)$ 1G10.0
Line $p+2$
if (daminit=1) then:
if (daminterp=1) then:
1:10$w_{\text{D}}$ Critical plastic work level for damage initiation $(\frac{J}{mm^3})$ 1G10.0
11:20$A_{\text{D}}$ Fitting parameter for plastic work function $(-)$ 1G10.0
21:30$m_{\text{D}}$ Fitting parameter for plastic work function $(-)$ 1G10.0
if (daminterp=2) then:
1:10$A_{w_{\text{D}}}$Critical plastic work level for damage initiation $(\frac{J}{mm^3})$;
single Arrhenius fit:
$w_{\text{D}}(T)=A_{w_{\text{D}}}\cdot[1-B_{w_{\text{D}}}\cdot \exp(\frac{T}{C_{w_{\text{D}}}})]$
1G10.0
11:20$B_{w_{\text{D}}}$ 1G10.0
21:30$C_{w_{\text{D}}}$ 1G10.0
31:40$A_{A_{\text{D}}}$Fitting parameter for plastic work function $(-)$;
single Arrhenius fit:
$A_{\text{D}}(T)=A_{A_{\text{D}}}\cdot[1-B_{A_{\text{D}}}\cdot \exp(\frac{T}{C_{A_{\text{D}}}})]$
1G10.0
41:50$B_{A_{\text{D}}}$ 1G10.0
51:60$C_{A_{\text{D}}}$ 1G10.0
61:70$\tau$ Damping coefficient for controlling creep-fatigue damage evolution $(s)$ 1G10.0
if (daminit=2) then:
if (daminterp=1) then:
1:10$p_{\text{D}}$ Critical plastic strain level for damage initiation $(-)$ 1G10.0
if (daminterp=2) then:
1:10$A_{p_{\text{D}}}$Drag stress $(\text{MPa})$ ; single Arrhenius fit:
$p_{\text{D}}(T)=A_{p_{\text{D}}}\cdot[1-B_{p_{\text{D}}}\cdot \exp(\frac{T}{C_{p_{\text{D}}}})]$
1G10.0
11:20$B_{p_{\text{D}}}$ 1G10.0
21:30$C_{p_{\text{D}}}$ 1G10.0
Line $p+3$
if (idam=1) then:
if (daminterp=1) then:
1:10$S_{\text{f}}$ Lemaitre parameter $(-)$ 1G10.0
11:20$S_{\text{fe}}$Lemaitre parameter $(-)$ 1G10.0
21:30$k_{1}$ Lemaitre parameter $(-)$ 1G10.0
31:40$k_{2}$ Lemaitre parameter $(-)$ 1G10.0
if (daminterp=2) then:
1:10$A_{S_{\text{f}}}$Lemaitre parameter $(-)$; single Arrhenius fit:
$S_{\text{f}}(T)=A_{S_{\text{f}}}\cdot[1-B_{S_{\text{f}}}\cdot \exp(\frac{T}{C_{S_{\text{f}}}})]$
1G10.0
11:20$B_{S_{\text{f}}}$ 1G10.0
21:30$C_{S_{\text{f}}}$ 1G10.0
31:40$S_{\text{fe}}$Lemaitre parameter $(-)$ 1G10.0
41:50$k_{1}$ Lemaitre parameter $(-)$ 1G10.0
51:60$k_{2}$ Lemaitre parameter $(-)$ 1G10.0
if (idam=2) then:
1:10$K_{\text{D}}$ IfW creep-fatigue damage parameter $(-)$ 1G10.0
11:20$K_{\text{TD}}$ IfW creep-fatigue damage parameter $(-)$ 1G10.0
21:30$m_{\text{TD}}$ IfW creep-fatigue damage parameter $(-)$ 1G10.0
Line $p+4$ (only if idam=1)
if (daminterp=1) then:
1:10$S_{\text{c}}$ Lemaitre parameter $(-)$ 1G10.0
11:20$S_{\text{ce}}$Lemaitre parameter $(-)$ 1G10.0
21:30$k_{3}$ Lemaitre parameter $(-)$ 1G10.0
31:40$k_{4}$ Lemaitre parameter $(-)$ 1G10.0
41:50$k_{\text{k}}$ Lemaitre parameter $(-)$ 1G10.0
if (daminterp=2) then:
1:10$A_{S_{\text{c}}}$Lemaitre parameter $(-)$; single Arrhenius fit:
$S_{\text{c}}(T)=A_{S_{\text{c}}}\cdot[1-B_{S_{\text{c}}}\cdot \exp(\frac{T}{C_{S_{\text{c}}}})]$
1G10.0
11:20$B_{S_{\text{c}}}$ 1G10.0
21:30$C_{S_{\text{c}}}$ 1G10.0
31:40$S_{\text{ce}}$Lemaitre parameter $(-)$ 1G10.0
41:50$k_{3}$ Lemaitre parameter $(-)$ 1G10.0
51:60$k_{4}$ Lemaitre parameter $(-)$ 1G10.0
61:70$k_{\text{k}}$ Lemaitre parameter $(-)$ 1G10.0

Other things

Interpolation methods $f(T)$ included within VMVP:
1Unique value, no interpolation
2Single Arrhenius function

$P(T)=A_P\cdot \Bigl[ 1-B_P\cdot \exp \Bigl(\frac{T}{C_P} \Bigr) \Bigr]$

Parameters $A_P$, $B_P$ & $C_P$ are introduced in format 3G10.0
3Double Arrhenius function

$P(T)=A_P\cdot \Bigl[1-B_P\cdot \exp \Bigl(\frac{T}{C_P} \Bigr) - D_P\cdot \exp \Bigl(\frac{T}{E_P} \Bigr) \Bigr]$

Parameters $A_P$, $B_P$, $C_P$, $D_P$ & $E_P$ are introduced in format 5G10.0
43 deg. polynomial function

$P(T)=A_P\cdot[1 - B_P\cdot(T-T_0) + C_P\cdot(T-T_0)^2 - D_P\cdot(T-T_0)^3]$

Parameters $A_P$, $B_P$, $C_P$, $D_P$ & $T_0$ are introduced in format 5G10.0
5Logarithmic function

$P(T)=A_P + B_P \cdot \ln{(\frac{T_{abs}}{C_P})}$

Parameters $A_P$, $B_P$ & $C_P$ are introduced in format 3G10.0
FYI, $T*$ is the temperature in $K$
List of state variables
Q(1)Equiv. plastic (creep) strain (-)
Q(2)Equiv. plastic (creep) strain rate $(s^{-1})$
Q(3)Equiv. thermal strain (-)
Q(4:9)Plastic strain vector (-)
Q(10:15)Total strain vector (-)
Q(16)Isotropic/cyclic hardening R (MPa)
Q(17)Plastic memory surface radius (-)
Q(18:23)Plastic memory surface center $\zeta$
Q(24)Total accumulated damage
Q(25)Accumulated creep damage
Q(26)Accumulated fatigue damage
Q(27)Accumulated plastic energy $w_D$
Q(28:28+6$\times$nAFX-1)Kinematic hardening components $\underline{\mathbb{X}}$
laws/vmvp.1731590070.txt.gz · Last modified: 2024/11/14 14:14 by carlos