Table of Contents

VISU

Description

Cap model : elasto‑viscoplastic constitutive law for solid elements at constant temperature with effect of suction

The model

This law is used for mechanical analysis of elasto‑viscoplastic isotropic porous media undergoing large strains.

Files

Prepro: LVISU.F
Lagamine: VIS2EA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 41
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (12I5)
NINTV > 0 : number of sub-steps used to integrate numerically the constitutive equation in a time step.
= 0 : NINTV will be calculated in the law with DIV = $5.10^{-3}$
ISOL = 0 : use of total stresses in the constitutive law
≠ 0 : use of effective stresses in the constitutive law. See annex 8
IELA = 0 : Linear elasticity
> 0 : Non linear elasticity
IELAS = 0: Constant KAPPAS
> 0: Variable KAPPAS
ILODEF Shape of the yield surface in the deviatoric plane :
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : Associated plasticity
ITRACT = 0 : No traction limitation
≠ 0 : Traction stresses limitation
IECPS = 0 : $\psi$ is defined with PSIC and PSIE
= 1 : $\psi$ is defined with PHMPS
ICBIFComputation indice of bifurcation criterion
= 0 : non computed
= 1 : computed (plane strain state only
KMETH = 2 : actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IPCONS = 0 Definition of pre-consolidation pressure
≠ 0 Definition of OCR
ILC = 0: Barcelona LC curve
$\neq$ 0: Pasachalk LC curve

Real parameters

Line 1 (5G10.0)
E_PAR1First elastic parameter
E_PAR2Second elastic parameter
E_PAR3Third elastic parameter
E_PAR4Fourth elastic parameter
HARDHardening parameter
Line 2 (6G10.0)
PCONS0Preconsolidation pressure (If IPCONS0=0)
OCROver Consolidation Ratio (If IPCONS0<>0, see section 6.5
AI1MINMinimum value of $I_\sigma$ for non-linear elasticity
PSICCoulomb's angle (in degrees) for compressive paths
PSIECoulomb's angle (in degrees) for extensive paths
PHMPSVan Eekelen exponent (default value=-0.229)
Line 3 (6G10.0)
PHIC0Initial Coulomb’s angle (in degrees) for compressive paths
PHICFFinal Coulomb’s angle (in degrees) for compressive paths
BPHIOnly if there is hardening/softening
PHIE0Initial Coulomb’s angle (in degrees) for extensive paths
PHIEFFinal Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)
ANVan Eekelen exponent (default value=-0.229)
Line 4 (4G10.0)
COH0Initial value of cohesion
COHFFinal value of cohesion
BCOHOnly if there is hardening/softening
TRACTIONLimit of the traction stress (Only if ITRACT <>0 )
Line 5 (4G10.0)
POROSInitial soil porosity ($n_o$)
RHOSpecific mass
DIVParameter for the computation of NINTV in the law (for NINTV=0 only)
BIOPTBifurcation computation parameter
Line 6 (7G10.0)
S0Yield limit in term of suction (SI curve)
PCrelRelative Reference pressure PCONS0/PC for the definition of the LC curve
RRATIOMax soil stiffness
BETABeta soil stiffness parameter
LAMBDA-SPlastic suction coefficient
KAPPA-SElastic suction coefficient
PATMAtmospheric pressure
Line 7 (3G10.0)
kEvolution of cohesion with suction ($c(s) = c(0) + k.s$)
AKAPPAS1First parameter of KAPPAS formulation
AKAPPAS2Second parameter of KAPPAS formulation
Line 8 (3G10.0)
Visco_parameters for Cap
ALPHACViscoplastic parameter for $\Phi_C = ( f_c /p())* * \alpha_c$
OMEGA Viscosity parameter for $\gamma_c$
AIOT Viscosity parameter for $\gamma_c$
Line 9 (2G10.0)
Visco_parameters for friction
ALPHADparameter $\alpha_d$ for $\Phi_d = \left( \frac{f_d}{p_0} \right)^{\alpha_d}$
A2Dparameter $\alpha_d$ for $\gamma_d = a_2 \gamma_c$

Stresses

Number of stresses

= 6 : for 3D state
= 4 : for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 40 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 29 : in all the other cases

List of state variables

Q(1) = 1 in plane strain state
= circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state
Q(2) actualised specific mass
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (Friction mechanism)
= 2 if the current state is elasto-plastic (Pore collapse mechanism)
= 3 if the current state is elasto-plastic (Traction mechanism)
= 4 if the current state is elasto-plastic (Friction + pore mechanisms)
= 5 if the current state is elasto-plastic (Friction + traction mechanisms)
Q(4) plastic work per unit volume ($W^p$)
Q(5) Actualised value of porosity
Q(6) equivalent strain $n^o$1 $\varepsilon_{eq1} = \int \Delta \dot{\varepsilon}_{eq}\Delta t$
Q(7) Updated value of preconsolidation pressure $p_0$
Q(8) equivalent strain indicator $n^o 1$ (Villote $n^o 1$) $\alpha_1 = (\Delta\dot{\varepsilon}_{eq}\Delta t ) / \varepsilon_{eq1}$
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) Deviatoric strain
Q(15) Actualised value of cohesion
Q(16) Actualised value of frictional angle in compression path ($\phi_C$)
Q(17) Actualised value of frictional angle in compression path ($\phi_E$)
Q(18) APEX criterion
Q(19) Actualised value of ALAMBDAS
Q(20) Actualised value of AKAPPAS
Q(21) Actualised value of $S_0$
Q(22) Absolute value of reference pressure $P_C$
Q(23) PCONS0
Q(24) number of sub-intervals used for the integration
Q(25) number of interation used for the integration
Q(26) Cubic modulus
Q(27) Shear modulus
Q(28) OVERS
Q(29) → Q(40) reserved for bifurcation

Hardening forms

ITYLA = 2 : Volumetric strain hardening
$dp_0$ = ECRO $p_0\varepsilon_v^p$
Sign depedent on the consolidation stress.
Softening is possible.

Elastic forms

IELA = 0 : Linear elasticity
E_PAR1 = E : Young’s Elastic modulus
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = ECRO : Hardening parameter

IELA = 1 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = ANU : Poisson’s ratio
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 2 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = G0 : Shear modulus
E_PAR3 = not used
E_PAR4 = not used
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 3 : Non Linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = K0 : Minimum value of the bulk modulus
E_PAR3 = G0 : Shear modulus
E_PAR4 = ALPHA2 :
HARD = LAMBDA : Plastic slope in oedometer path
$ECRO=\frac{1+e_0}{\lambda - \kappa}$

IELA = 4 : Non Linear elasticity
E_PAR1 = K0 : Minimum value of the bulk modulus
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IELA = 5 : Non Linear elasticity
E_PAR1 = $\nu$ : Poisson’s ratio
E_PAR2 = n : n parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD
ECRO=HARD

IPCONS parameter

IPCONS = 0 : $p_0 = PCONS0$
IPCONS = 1 : $p_0 = \sigma_v . OCR$
IPCONS = 0 : $p_0 = p_0(\sigma,\text{cohesion}, \phi) . OCR$

Where $p_0(\sigma,\text{cohesion},\phi) = \left[ \frac{-II_{\widehat{\sigma}}^2}{m^2(I_{\sigma}-\frac{3c}{tg\phi})} - I_{\sigma} \right] / 3$