====== VISU ====== ===== Description ===== Cap model : elasto‑viscoplastic constitutive law for solid elements at constant temperature with effect of suction ==== The model ==== This law is used for mechanical analysis of elasto‑viscoplastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LVISU.F \\ Lagamine: VIS2EA.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 41 | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (12I5) ^^ |NINTV| > 0 : number of sub-steps used to integrate numerically the constitutive equation in a time step. | |:::| = 0 : NINTV will be calculated in the law with DIV = $5.10^{-3}$| |ISOL| = 0 : use of total stresses in the constitutive law| |:::| ≠ 0 : use of effective stresses in the constitutive law. See annex 8 | |IELA| = 0 : Linear elasticity| |:::| > 0 : Non linear elasticity| |IELAS| = 0: Constant KAPPAS| |:::| > 0: Variable KAPPAS| |ILODEF| Shape of the yield surface in the deviatoric plane : | |:::| = 1 : circle in the deviatoric plane| |:::| = 2 : smoothed irregular hexagon in the deviatoric plane| |ILODEG| Not used : Associated plasticity| |ITRACT| = 0 : No traction limitation| |:::|≠ 0 : Traction stresses limitation| |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE| |:::| = 1 : $\psi$ is defined with PHMPS| |ICBIF|Computation indice of bifurcation criterion| |:::| = 0 : non computed| |:::| = 1 : computed (plane strain state only| |KMETH| = 2 : actualised VGRAD integration| |:::| = 3 : Mean VGRAD integration (Default value) | |IPCONS| = 0 Definition of pre-consolidation pressure| |:::|≠ 0 Definition of OCR| |ILC| = 0: Barcelona LC curve| |:::| $\neq$ 0: Pasachalk LC curve| ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1|First elastic parameter | |E_PAR2|Second elastic parameter | |E_PAR3|Third elastic parameter | |E_PAR4|Fourth elastic parameter | |HARD|Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0|Preconsolidation pressure (If IPCONS0=0) | |OCR|Over Consolidation Ratio (If IPCONS0<>0, see section 6.5 | |AI1MIN|Minimum value of $I_\sigma$ for non-linear elasticity | |PSIC|Coulomb's angle (in degrees) for compressive paths| |PSIE|Coulomb's angle (in degrees) for extensive paths| |PHMPS|Van Eekelen exponent (default value=-0.229)| ^ Line 3 (6G10.0) ^^ |PHIC0|Initial Coulomb’s angle (in degrees) for compressive paths | |PHICF|Final Coulomb’s angle (in degrees) for compressive paths | |BPHI|Only if there is hardening/softening| |PHIE0|Initial Coulomb’s angle (in degrees) for extensive paths | |PHIEF|Final Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)| |AN|Van Eekelen exponent (default value=-0.229) | ^ Line 4 (4G10.0) ^^ |COH0|Initial value of cohesion | |COHF|Final value of cohesion | |BCOH|Only if there is hardening/softening | |TRACTION|Limit of the traction stress (Only if ITRACT <>0 ) | ^ Line 5 (4G10.0) ^^ |POROS|Initial soil porosity ($n_o$)| |RHO|Specific mass| |DIV|Parameter for the computation of NINTV in the law (for NINTV=0 only)| |BIOPT|Bifurcation computation parameter| ^ Line 6 (7G10.0) ^^ |S0|Yield limit in term of suction (SI curve)| |PCrel|Relative Reference pressure PCONS0/PC for the definition of the LC curve| |RRATIO|Max soil stiffness| |BETA|Beta soil stiffness parameter| |LAMBDA-S|Plastic suction coefficient| |KAPPA-S|Elastic suction coefficient| |PATM|Atmospheric pressure| ^ Line 7 (3G10.0) ^^ |k|Evolution of cohesion with suction ($c(s) = c(0) + k.s$)| |AKAPPAS1|First parameter of KAPPAS formulation| |AKAPPAS2|Second parameter of KAPPAS formulation| ^ Line 8 (3G10.0) ^^ |Visco_parameters for Cap|| |ALPHAC|Viscoplastic parameter for $\Phi_C = ( f_c /p())* * \alpha_c$| |OMEGA| Viscosity parameter for $\gamma_c$| |AIOT| Viscosity parameter for $\gamma_c$| ^ Line 9 (2G10.0) ^^ |Visco_parameters for friction|| |ALPHAD|parameter $\alpha_d$ for $\Phi_d = \left( \frac{f_d}{p_0} \right)^{\alpha_d}$| |A2D|parameter $\alpha_d$ for $\gamma_d = a_2 \gamma_c$| ===== Stresses ===== ==== Number of stresses ==== = 6 : for 3D state\\ = 4 : for the other cases. ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the other cases : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== = 40 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)\\ = 29 : in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| = circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state| |Q(2)| actualised specific mass | |Q(3)| = 0 if the current state is elastic | |:::|= 1 if the current state is elasto-plastic (Friction mechanism) | |:::|= 2 if the current state is elasto-plastic (Pore collapse mechanism) | |:::|= 3 if the current state is elasto-plastic (Traction mechanism) | |:::|= 4 if the current state is elasto-plastic (Friction + pore mechanisms) | |:::|= 5 if the current state is elasto-plastic (Friction + traction mechanisms) | |Q(4)| plastic work per unit volume ($W^p$) | |Q(5)| Actualised value of porosity | |Q(6)| equivalent strain $n^o$1 $\varepsilon_{eq1} = \int \Delta \dot{\varepsilon}_{eq}\Delta t$ | |Q(7)| Updated value of preconsolidation pressure $p_0$ | |Q(8)| equivalent strain indicator $n^o 1$ (Villote $n^o 1$) $\alpha_1 = (\Delta\dot{\varepsilon}_{eq}\Delta t ) / \varepsilon_{eq1}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)| Z deformation | |Q(12)| XY deformation | |Q(13)| Volumetric strain | |Q(14)| Deviatoric strain | |Q(15)| Actualised value of cohesion | |Q(16)| Actualised value of frictional angle in compression path ($\phi_C$) | |Q(17)| Actualised value of frictional angle in compression path ($\phi_E$) | |Q(18)| APEX criterion | |Q(19)| Actualised value of ALAMBDAS | |Q(20)| Actualised value of AKAPPAS | |Q(21)| Actualised value of $S_0$ | |Q(22)| Absolute value of reference pressure $P_C$ | |Q(23)| PCONS0 | |Q(24)| number of sub-intervals used for the integration | |Q(25)| number of interation used for the integration | |Q(26)| Cubic modulus | |Q(27)| Shear modulus | |Q(28)| OVERS | |Q(29) → Q(40)| reserved for bifurcation | ===== Hardening forms ===== __ITYLA = 2__ : Volumetric strain hardening \\ $dp_0$ = ECRO $p_0\varepsilon_v^p$\\ Sign depedent on the consolidation stress.\\ Softening is possible. ===== Elastic forms ===== __IELA = 0__ : Linear elasticity \\ E_PAR1 = E : Young’s Elastic modulus \\ E_PAR2 = ANU : Poisson’s ratio \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = ECRO : Hardening parameter\\ __IELA = 1__ : Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = ANU : Poisson’s ratio \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 2__ : Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = G0 : Shear modulus \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 3__ : Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = K0 : Minimum value of the bulk modulus \\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = ALPHA2 : \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 4__ : Non Linear elasticity \\ E_PAR1 = K0 : Minimum value of the bulk modulus \\ E_PAR2 = n : n parameter\\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = Patm : Atmospheric pressure\\ HARD \\ ECRO=HARD __IELA = 5__ : Non Linear elasticity \\ E_PAR1 = $\nu$ : Poisson’s ratio \\ E_PAR2 = n : n parameter\\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = Patm : Atmospheric pressure\\ HARD \\ ECRO=HARD ===== IPCONS parameter ===== __IPCONS = 0 :__ $p_0 = PCONS0$\\ __IPCONS = 1 :__ $p_0 = \sigma_v . OCR$\\ __IPCONS = 0 :__ $p_0 = p_0(\sigma,\text{cohesion}, \phi) . OCR$\\ Where $p_0(\sigma,\text{cohesion},\phi) = \left[ \frac{-II_{\widehat{\sigma}}^2}{m^2(I_{\sigma}-\frac{3c}{tg\phi})} - I_{\sigma} \right] / 3$