====== SILCOETC ====== ===== Description ===== Full law name : SILCOETC3D\\ Coupled plastic-damage multiracial constitutive law for concrete behaviour.\\ For further details see PhD thesis of Thomas Gernay or Andra report by B. Cerfontaine. ==== The model ==== ==== Files ==== Prepro: LSILCOETC3D.F \\ Lagamine: PIL_SILCOET3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 618| |COMMNT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (6I5) ^^ |NINTV| = 0 : By default | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| ≠ 0 : Use of effective stresses in the constitutive law (See annex 7) | |KMETH| = 2 : Actualised vgrad method | |:::| = 3 : Mean vgrad method (default) | |ITEMP| $n$ = 0 : Influence of temperature (not yet activated) (by default) | |ICREEP| = 0 : Introduction of creep (not yet activated) (by default) | |IHYDR| = 0 : Early age behaviour (not yet activated) (by default) | ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |fc| Uniaxial compression strength | |ft| Uniaxial tension strength | |fc0| Uniaxial compression elastic limit (by default = 0.3fc) | |fb| Biaxial strength (by default = 1.16fc) | |$\varepsilon_{peak}$| Total deformation at peak stress for uniaxial compression | ^ Line 2 (4G10.0) ^^ |ANU| POISSON's ratio | |E| YOUNG's elastic modulus | |DIV| DIV parameter | |RHO| Specific mass | ^ Line 3 (4G10.0) ^^ |$\alpha$g| Dilatancy parameters | |dc| Damage at peak stress for uniaxial compression | |gt| Crack energy density per unit volume [Nm/m$^2$] | |xc| Ratio between crack energy dissipated before peak and total energy dissipated | __If ICREEP == 1 :__ ^ Line 4 (XG10.0) ^^ |X| Creep parameters | __If IHYDR == 1 :__ ^ Line 5 (4G10.0) ^^ |ALPHATH| Hydration threshold (properties are equal to Eth/E0) | |Pa| Parameter for the evolution of strength | |Pb| Parameter for the evolution of stiffness | |Eth| Elastic stiffness below threshold | Note : The evolution of the hydration degree must be specified in file .hydr such that : |TIMES| |(I10) Number of time steps defined below| |(2G10.0,repeated) Time step, alpha| ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 44 ==== List of state variables ==== |Q(1)| Element thickness ($t$) in plane stress state | |:::| = 1 : Plane strain state | |:::| Circumferential strain rate ($\varepsilon_r$) in axisymmetrical state | |:::| = 0 : 3D state | |:::| Element thickness ($t$) in generalized plane state | |Q(2)| Nothing | |Q(3)| Volumetric deformation | |Q(4-9)| Total strain (mechanical + transient) | |Q(10-15)| Mechanical strain | |Q(16-21)| Transient creep strain | |Q(22-27)| Plastic strain | |Q(29-30)| Damage : dt, dc | |Q(31-32)| Internal variables : kt, kc | |Q(33-38)| Effective stress | |Q(39-44)| Compressive part of the effective stress |