Table of Contents

SGCP

Description

STRAIN GRADIENT CRYSTAL PLASTICITY CONSTITUTIVE LAW

Implemented by S. Yuan, L. Duchêne, 2017

The model

Mechanical analysis of strain gradient crystal plasticity problem
Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004, J. Mech. Phys. Solids. 52, 2379-2401. doi: 10.1016/j.jmps.2004.03.007
Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004, Int. J. Solids Struct. 41, 5209-5230. doi: 10.1016/j.ijsolstr.2004.04.021
Bayley, C.J., Brekelmans, W.A.M., Geers, M.G.D., 2006, Int. J. Solids Struct. 43, 7268–7286. doi: 10.1016/j.ijsolstr.2006.05.011

Files

Prepro: T151_V3.F
Lagamine: T152_V3.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file (COLAW==>*.lag)

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 973
COMMENT Any comment (up to 60 characters)
Line 2 (2I5, 8G10.0)
INRMiterative method (0, 1, 2)
MAXIT
PREC
damp1
damp2

if (INRM .eq. 0) AMOR=damp1=1; if (INRM .eq. 1) $h_k$=damp1 & $\nu(NS)$=damp2; if (INRM .eq. 2) damping is computed automatically

Real parameters

Line 1 (3G10.0)
$C_{11}$ $4^{th}$ order anisotropic elastic tensor component
$C_{12}$ $4^{th}$ order anisotropic elastic tensor component
$C_{44}$ $4^{th}$ order anisotropic elastic tensor component
Line 2 (5G10.0)
$\dot{\gamma}_{0}$ reference plastic strain rate
$m$ rate sensitivity exponent of the original power-law function
$G_{0}$ total free energy needed to move a dislocation to overcome a short-range barrier without external work aid
$k$ Boltzmann’s constant
$T$ absolute temperature
Line 3 (3G10.0)
$c$ material constant
$\mu$ shear modulus
$b$ length of Burgers vector
Line 4 (6G10.0)
$a_{0}$ interactions coefficient: self-hardening
$a_{1}$ interactions coefficient: coplanar system
$a_{2}$ interactions coefficient: systems pair leading to Glissile junctions formation
$a_{3}$ interactions coefficient: systems pair leading to Lomer-Cottrell sessile locks
$a_{4}$ interactions coefficient: collinear system
$a_{5}$ interactions coefficient: Hirth-Lock system pair with normal slip directions
Line 5 (3G10.0)
$y_{c}$ critical annihilation length
$\rho_{{SSD}_{0}}$ initial SSD density
$K$ dislocation segments length constant in average dislocation segment length of mobile dislocations (SSDs) on system α function
Line 6 (6G10.0)
$h_{0}$ interactions coefficient
$h_{1}$ interactions coefficient
$h_{2}$ interactions coefficient
$h_{3}$ interactions coefficient
$h_{4}$ interactions coefficient
$h_{5}$ interactions coefficient
Line 7 (3G10.0)
$R_{e}$ radius of edge dislocation field
$R_{s}$ radius of edge dislocation field
$\nu$ Poisson’s coefficient
Line 8 (3G10.0)
$\Phi_{1}$ Euler rotation angle
$\Phi$ Euler rotation angle
$\Phi_{2}$ Euler rotation angle
Line 9 (2I5)
$NS$ number of slip systems
$ND$ number of dislocation types
Line 10 (3G10.0)
$UNIT$ PAR_UNIT
$UNIT2$ PAR_UNIT2
$UNIT3$ PAR_UNIT3
Line 11 (2G10.0)
$\rho_{{GND}_{0}}$ initial GND density
$E$ Young’s modulus (not used in the model)

Stresses

Number of stresses

6 for 3D state

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:

SIGMB(1)$\sigma_{11}$
SIGMB(2)$\sigma_{22}$
SIGMB(3)$\sigma_{33}$
SIGMB(4)$\sigma_{12}$
SIGMB(5)$\sigma_{13}$
SIGMB(6)$\sigma_{23}$

State variables

Number of state variables

1839 × 8 (integration points)

List of state variables

Q(1:9)${(F^{B}_{P})}^{-1}$
Q(10:21)$\dot{\gamma}^\alpha$
Q(22:33)${\gamma}^\alpha$
Q(34:45)$\rho^{\xi}_{SSD}$
Q(46:54)$1^{th}$ Piola-Kirchhoff stress $P_{11} P_{22} P_{33} P_{12} P_{13} P_{23} P_{21} P_{31} P_{32}$
Q(55:72)reserved for $\rho^{\xi}_{GND}$
Q(73:126)reserved for $r^{\xi}_{i}$
Q(127:135)reserved for $F_{ij}$
Q(136:297)$(\frac{d\sigma_{ij}}{d\rho^{\xi}_{GND}})_{ij\xi}$
Q(298:783)$(\frac{d\sigma_{ij}}{dr^{\xi}_{k}})_{ijk\xi}$
Q(784:981)$(\frac{d\gamma^{\alpha}}{dF_{kl}})_{\alpha kl}$
Q(982:1107)$(\frac{d\gamma^{\alpha}}{d\rho_{GND}^{\xi}})_{\alpha \xi}$
Q(1108:1755)$(\frac{d\gamma^{\alpha}}{dr_{k}^{\xi}})_{\alpha k \xi}$
Q(1756:1764)$2^{nd}$ Piola-Kirchhoff stress $S_{11} S_{22} S_{33} S_{12} S_{13} S_{23} S_{21} S_{31} S_{32}$
Q(1765:1770)$\epsilon^{u}$ nature strain $e_{11} e_{12} e_{13} e_{22} e_{23} e_{33} $
Q(1771:1773)$\gamma^{norm} \rho_{SSD}^{norm} \rho_{GND}^{norm}$
Q(1774:1776)Blank
Q(1777)Blank but resreved for $\epsilon_{eq}^{p}$
Q(1778:1813)reserved for ${(F^{B}_{e})}$ ${(F^{B}_{e})}^{-1}$ ${(F^{B})}^{-1}$ ${(F^{B}_{P})}$
Q(1814:1825)Schmid stress ($\alpha=1..12$)
Q(1826)Schmid stress (square root norm)
Q(1827:1838)back-stress ($\alpha=1..12$)
Q(1839)back-stress (square root norm)