====== SGCP ====== ===== Description ===== STRAIN GRADIENT CRYSTAL PLASTICITY CONSTITUTIVE LAW \\ Implemented by S. Yuan, L. Duchêne, 2017 ==== The model ==== Mechanical analysis of strain gradient crystal plasticity problem \\ Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004, J. Mech. Phys. Solids. 52, 2379-2401. doi: 10.1016/j.jmps.2004.03.007 \\ Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004, Int. J. Solids Struct. 41, 5209-5230. doi: 10.1016/j.ijsolstr.2004.04.021 \\ Bayley, C.J., Brekelmans, W.A.M., Geers, M.G.D., 2006, Int. J. Solids Struct. 43, 7268–7286. doi: 10.1016/j.ijsolstr.2006.05.011 \\ ==== Files ==== Prepro: T151_V3.F \\ Lagamine: T152_V3.F \\ ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO | |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file (COLAW==>*.lag) ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 973| |COMMENT| Any comment (up to 60 characters) | ^ Line 2 (2I5, 8G10.0)^^ |INRM|iterative method (0, 1, 2)| |MAXIT| | |PREC| | |damp1| | |damp2| | if (INRM .eq. 0) AMOR=damp1=1; if (INRM .eq. 1) $h_k$=damp1 & $\nu(NS)$=damp2; if (INRM .eq. 2) damping is computed automatically ==== Real parameters ==== ^ Line 1 (3G10.0) ^^ |$C_{11}$| $4^{th}$ order anisotropic elastic tensor component| |$C_{12}$| $4^{th}$ order anisotropic elastic tensor component| |$C_{44}$| $4^{th}$ order anisotropic elastic tensor component| ^ Line 2 (5G10.0) ^^ |$\dot{\gamma}_{0}$| reference plastic strain rate| |$m$| rate sensitivity exponent of the original power-law function| |$G_{0}$| total free energy needed to move a dislocation to overcome a short-range barrier without external work aid| |$k$| Boltzmann’s constant| |$T$| absolute temperature| ^ Line 3 (3G10.0) ^^ |$c$| material constant| |$\mu$| shear modulus| |$b$| length of Burgers vector| ^ Line 4 (6G10.0) ^^ |$a_{0}$| interactions coefficient: self-hardening| |$a_{1}$| interactions coefficient: coplanar system| |$a_{2}$| interactions coefficient: systems pair leading to Glissile junctions formation| |$a_{3}$| interactions coefficient: systems pair leading to Lomer-Cottrell sessile locks| |$a_{4}$| interactions coefficient: collinear system| |$a_{5}$| interactions coefficient: Hirth-Lock system pair with normal slip directions| ^ Line 5 (3G10.0) ^^ |$y_{c}$| critical annihilation length| |$\rho_{{SSD}_{0}}$| initial SSD density| |$K$| dislocation segments length constant in average dislocation segment length of mobile dislocations (SSDs) on system α function| ^ Line 6 (6G10.0) ^^ |$h_{0}$| interactions coefficient| |$h_{1}$| interactions coefficient| |$h_{2}$| interactions coefficient| |$h_{3}$| interactions coefficient| |$h_{4}$| interactions coefficient| |$h_{5}$| interactions coefficient| ^ Line 7 (3G10.0) ^^ |$R_{e}$| radius of edge dislocation field| |$R_{s}$| radius of edge dislocation field| |$\nu$| Poisson’s coefficient| ^ Line 8 (3G10.0) ^^ |$\Phi_{1}$| Euler rotation angle| |$\Phi$| Euler rotation angle| |$\Phi_{2}$| Euler rotation angle| ^ Line 9 (2I5) ^^ |$NS$| number of slip systems| |$ND$| number of dislocation types| ^ Line 10 (3G10.0) ^^ |$UNIT$| PAR_UNIT| |$UNIT2$| PAR_UNIT2| |$UNIT3$| PAR_UNIT3| ^ Line 11 (2G10.0) ^^ |$\rho_{{GND}_{0}}$| initial GND density| |$E$| Young’s modulus (not used in the model)| ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIGMB(1)|$\sigma_{11}$| |SIGMB(2)|$\sigma_{22}$| |SIGMB(3)|$\sigma_{33}$| |SIGMB(4)|$\sigma_{12}$| |SIGMB(5)|$\sigma_{13}$| |SIGMB(6)|$\sigma_{23}$| ===== State variables ===== ==== Number of state variables ==== 1839 × 8 (integration points) ==== List of state variables ==== |Q(1:9)|${(F^{B}_{P})}^{-1}$| |Q(10:21)|$\dot{\gamma}^\alpha$| |Q(22:33)|${\gamma}^\alpha$| |Q(34:45)|$\rho^{\xi}_{SSD}$| |Q(46:54)|$1^{th}$ Piola-Kirchhoff stress $P_{11} P_{22} P_{33} P_{12} P_{13} P_{23} P_{21} P_{31} P_{32}$| |Q(55:72)|reserved for $\rho^{\xi}_{GND}$| |Q(73:126)|reserved for $r^{\xi}_{i}$| |Q(127:135)|reserved for $F_{ij}$| |Q(136:297)|$(\frac{d\sigma_{ij}}{d\rho^{\xi}_{GND}})_{ij\xi}$| |Q(298:783)|$(\frac{d\sigma_{ij}}{dr^{\xi}_{k}})_{ijk\xi}$| |Q(784:981)|$(\frac{d\gamma^{\alpha}}{dF_{kl}})_{\alpha kl}$| |Q(982:1107)|$(\frac{d\gamma^{\alpha}}{d\rho_{GND}^{\xi}})_{\alpha \xi}$| |Q(1108:1755)|$(\frac{d\gamma^{\alpha}}{dr_{k}^{\xi}})_{\alpha k \xi}$| |Q(1756:1764)|$2^{nd}$ Piola-Kirchhoff stress $S_{11} S_{22} S_{33} S_{12} S_{13} S_{23} S_{21} S_{31} S_{32}$| |Q(1765:1770)|$\epsilon^{u}$ nature strain $e_{11} e_{12} e_{13} e_{22} e_{23} e_{33} $| |Q(1771:1773)|$\gamma^{norm} \rho_{SSD}^{norm} \rho_{GND}^{norm}$| |Q(1774:1776)|Blank| |Q(1777)|Blank but resreved for $\epsilon_{eq}^{p}$| |Q(1778:1813)|reserved for ${(F^{B}_{e})}$ ${(F^{B}_{e})}^{-1}$ ${(F^{B})}^{-1}$ ${(F^{B}_{P})}$| |Q(1814:1825)|Schmid stress ($\alpha=1..12$)| |Q(1826)|Schmid stress (square root norm)| |Q(1827:1838)|back-stress ($\alpha=1..12$)| |Q(1839)|back-stress (square root norm)|