Table of Contents

RUBB

Description

Hyperelastic constitutive law for solid elements at constant temperature

The model

This law is only used for large strains analysis of rubber-like materials

Files

Prepro: LRUBB.F
Lagamine: RUBB2S.F, RUBB2E.F, RUBB2A.F, RUBB3D.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 6
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
MODEL = 0 : using Mooney-Rivlin model
= 1 : using Kilian model
MFUN = 0 : using penalty function : $ln I_3$
= 1 : using penalty function : $I_3 - l$

Remark: the strain energy density function W for Mooney-Rivlin model : \[ W = C_l (I_l - 3) + C_2 (I_2 - 3) \] For Kilian model : \[ W = G \{ 2 D_m \left[ \ln\left( l \frac{D_l}{D_m}\right) + \frac{D_l}{D_m} \right] + \frac{2}{3} a D_l^{\frac{2}{3}} \} \] \[ D_l = 0.5 (I_l - 3 ) \] ($I_1, I_2, I_3$ are the three strain invariants of the Cauchy-Green deformation tensor)

Real parameters

For Mooney-Rivlin model:

Line 1 (3G10.0)
$C_1$
$C_2$
ANU

For Kilian model (4G10.0):

Line 1 (4G10.0)
$G$
$D_m$
ANU
a

( the range of the Poisson's ratio : $0.489 < ANU < 0.5$ )

Stresses

Number of stresses

= 6 for the 3-D state
= 4 for the other cases.

Meaning

The stresses are the components of CAUCHY stress tensor in global (X, Y, Z) coordinates. For the 3-D state :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

3

List of state variables

Q(1)= element thickness (t) in plane stress state
= 1 in plane strain state
= circumferential strain rate ($\varepsilon_r$) in axisymmetrical state
= 0 in 3‑D state
= element thickness (t) in generalized plane state.
Q(2)hydrostatic pressure
Q(3)the third strain invariant of the Cauchy-Green deformation tensor