Nested surface model.
This law is used for mechanical analysis of the cyclic behaviour of soils, with or without cohesion.
Prepro: LPREVO.F
Lagamine: PREVOST.F
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 612 |
COMMNT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (6I5) | |
---|---|
NINTV | = 0 : by default |
ISOL | = 0 : Use of total stresses in the constitutive law |
$\neq$ 0 : Use of effective stresses in the constitutive law (See annex 7) | |
KRES | Resolution method (=1, 2 is not available any more) |
ILODEF | Not used any more |
ILODEG | Not used any more |
ISURF | Surface type and hardening direction |
= 1 : Von Mises shape | |
= 2 : Drucker Prager shape and Mroz hardening rule | |
= 3 : Drucker Prager shape and Prager hardening rule | |
KMETH | = 2 : Actualised vgrad method |
= 3 : Mean vgrad method (default) |
Line 1 (5G10.0) | |
---|---|
E | YOUNG's elastic modulus |
ANU | POISSON's ratio |
RHO | Specific mass |
NSURF | Number of nested surfaces |
DIV | DIV parameter |
Line 2 (5G10.0) | |
ACOH | $p'_0$ : Cohesion parameter (see Cerfontaine’s thesis) |
IPVOL | = 0 : Basic volumetric hardening direction (P“) (default) |
= 1 : Modified hardening direction | |
ETA1 | First parameter of P” |
ETA2 | Second parameter of P“ |
ETA3 | Third parameter of P” |
Line 3 (5G10.0) | |
ANMAT | $p$-dependency of the stiffness, exponent $n$ |
PREF | Reference pressure for the p-dependency |
FMIN | Minimum pressure for the p-dependency |
ARRET1 | First criterion of the local iterative process (variation/relative residual) |
ARRET2 | Second criterion of the local iterative process (absolute residual) |
If IANA ≠ 4 (2D state)
Line 4 (6G10.0) - Repeated NSURF times | |
---|---|
AH | Plastic modulus associated to surface i |
AM | Radius associated to surface i |
ALPHA(1) | Component of the backstress tensor ($\alpha_{11}$) |
ALPHA(2) | Component of the backstress tensor ($\alpha_{22}$) |
ALPHA(3) | Component of the backstress tensor ($\alpha_{33}$) |
ALPHA(4) | Component of the backstress tensor ($\alpha_{12}$) |
Else if IANA = 4 (3D state)
Line 4 (8G10.0) - repeated NSURF times | |
---|---|
AH | Plastic modulus associated to surface i |
AM | Radius associated to surface i |
ALPHA(1) | Component of the backstress tensor ($\alpha_{11}$) |
ALPHA(2) | Component of the backstress tensor ($\alpha_{22}$) |
ALPHA(3) | Component of the backstress tensor ($\alpha_{33}$) |
ALPHA(4) | Component of the backstress tensor ($\alpha_{12}$) |
ALPHA(5) | Component of the backstress tensor ($\alpha_{13}$) |
ALPHA(6) | Component of the backstress tensor ($\alpha_{23}$) |
6 for 3D state
4 for the other cases
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{xz}$ |
SIG(6) | $\sigma_{yz}$ |
For the other cases:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{xy}$ |
SIG(4) | $\sigma_{zz}$ |
7
Q(1) | Element thickness ($t$) in plane stress state |
= 1 : Plane strain state | |
Circumferential strain rate ($\varepsilon_r$) in axisymmetrical state | |
= 0 : 3D state | |
Element thickness ($t$) in generalized plane state | |
Q(2) | Nothing |
Q(3) | IYIELD : Active surface |
Q(4) | ALIQU : Liquefaction indicator |
= 1 if liquefaction | |
= 0 otherwise | |
Q(5) | TESTQM : $\rvert\rvert Q'_{n+1}\rvert\rvert$ |
Q(6) | VOLUM : Volumetric deformation |
Q(7) | DGAMMA |
Q(8) | $\varepsilon_{xx}$ |
Q(9) | $\varepsilon_{yy}$ |
Q(10) | $\varepsilon_{zz}$ |
Q(11) | $\varepsilon_{xy}$ |
Q(12) | $\varepsilon_{xz}$ (if 3D) |
Q(13) | $\varepsilon_{yz}$ (if 3D) |
Q(14) | Previous time step |
Q(15) | $\eta=\frac{q}{p'}$ |
Q(16:) | AH(i) : Does not change but might |
Q(17:) | AM(i) : Does not change but might |
Q(18:) | ALPHA(i,1) |
Q(19:) | ALPHA(i,2) |
Q(20:) | ALPHA(i,3) |
Q(21:) | ALPHA(i,4) |
Q(22:) | ALPHA(i,5) if 3D |
Q(23:) | ALPHA(i,6) if 3D |