====== PERSOL ====== ===== Description ===== Non-associated PERZYNA type visco-plastic constitutive law with non-linear elasticity. Isotropic hardening/softening for friction angle, cohesion and pre-consolidation pressure. For solid elements at constant temperature. ==== The model ==== This law is used for mechanical analysis of visco-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LPERSOL.F \\ Lagamine: PERZINT.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES (no bifurcation analysis) | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 69| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== LPARAM(5) to LPARAM(14) : ^ Line 1 (11I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| = 1 : Use of effective stresses in the constitutive law (See [[appendices:a8|appendix 8]]) | |IELA| = 0 : Linear elasticity | |:::| > 1 : Non-linear elasticity for the moment MAX=4 | |ILODEF| Deviatoric section shape of the loading surface in {$\sigma_1 ; \sigma_2 ; \sigma_3$} | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Deviatoric section shape of the potential surface in {$\sigma_1 ; \sigma_2 ; \sigma_3$} | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined by the Taylor rule : PHMPS=$\phi_C-\Psi_C=\phi_E-\Psi_E$ | |IECROUC| = 1 : no hardening in cap | |:::| = 2 : Hardening in cap | |IECROUD| = 1 : No hardening in failure | |:::| = 2 : Hardening in failure | |KMETH| = 3 : Mean vgrad method | |:::| = 2 : Actualised vgrad method (=KJaum ?) | |ICBIF| = 0 : Nothing | |:::| = 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis) | |IUNDIM| ??? | ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |ECRO|Hardening parameter - **TO BE CHECKED**| |H1| | ^Line 2 (6G10.0)^^ |PCONS0|Pre-consolidation pressure\\ If PCONSO0=0, OCR is used| |OCR|Over Consolidation Ratio | |AI1MIN| Minimum value of $I_{\sigma}$ for non-linear elasticity | |PSIC | $\psi_C$ \\ IECPS = 1 : not used \\ IECPS = 0 : PSIC = const = PARAM(32) | |PSIE| $\psi_E$ \\ IECPS = 1 : not used \\ IECPS = 0 : PSIE = const = PARAM(33) | |PHMPS| TAYLOR constant, used if IECPS=1 \\ then PSIC = PHIC-PHMPS \\ PSIE = PHIE - PHMPS | ^Line 3 (6G10.0)^^ | PHIC0 | $\phi_{C0}$ ($\phi_{C}$ is the Coulomb angle in degrees for compression)| | PHICF | $\phi_{Cf}$ ($\phi_{C}$ is the Coulomb angle in degrees for compression)| | BPHI | $B_p$ | | PHIE0 | $\phi_{E0}$ ($\phi_{E}$ is the Coulomb angle in degrees for extension)| | PHIEF | $\phi_{Ef}$ ($\phi_{E}$ is the Coulomb angle in degrees for extension)| |AN| Van Eekelen exponent (default value=-0.229) | ^Line 4 (5G10.0)^^ | COH0 | $c_0$ (COH is the cohesion value)| | COHF | $c_f$ | | BCOH | $B_c$ | |POROS0| Initial soil porosity ($n_o$) | |RHO| Specific mass | ^Line 5 (4G10.0)^^ | ALPHAC | Visco-plastic parameter for $\Phi_c=\left(\frac{f_c}{p_0}\right).\alpha_c$ | | OMEGA | Viscosity parameter for $\gamma_c$ | | AIOT | Viscosity parameter for $\gamma_c$ | | PATM | Atmospheric pressure, defined two times for IELA=4 | ^Line 6 (4G10.0)^^ | A2D in degree ($\phi$) | Parameter $a_2$ for $\gamma_d=a_2\gamma_c$ | | ALPHAD | Parameter $\alpha_d$ for $\Phi_d=\left(\frac{f_d}{p_0}\right)^{\alpha_d}$ | |DIV| Parameter for the computation of NINTV (if NINTV=0)| |BIOPT| | | | IELA = 0 | IELA = 1 | IELA = 2 | IELA = 3 | IELA = 4 | |E_PAR1| E | $\kappa$ | $\kappa$ | $\kappa$ | $\kappa$ | |E_PAR2| $\nu$ | $\nu$ | $G_0$ | $G_0$ | $G_0$ | |E_PAR3| | | | $K_0$ | Exp_N | |E_PAR4| | | | ALPHA_2 | PATM | |ECRO| ECRO | $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] | $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] | $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] | $\lambda$ \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] | Where : |$K_0$| Minimum value of the bulk modulus | |Exp_N| $n$ parameter | |$G_0$| Shear modulus | |PATM| Atmospheric pressure | |$\lambda$| Plastic slope in oedometer path | |$\kappa$| Elastic slope in oedometer path | |ECRO| Hardening parameter (TO BE CHECKED) | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| ===== State variables ===== ==== Number of state variables ==== = 32 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ = 20 in all the other cases ==== List of state variables ==== |Q(1)| = 1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Specific mass $\rho$ actualised in the element routine | |Q(3)| = 0 : Current state is elastic | |:::| = 1,2 : Current state is inelastic CAP or D | |Q(4)| Plastic work per unit volume ($W^p$) | |Q(5)| Porosity : $n=\frac{e}{1-e}=\frac{\Omega_{voids}}{\Omega_{total}}$ | |Q(6)| = $\sin(3\beta)$ where $-\frac{\pi}{6}\leq\beta\leq\frac{\pi}{6}$ is a Lode's angle | |Q(7)| Pre-consolidation pressure $p_0$ | |Q(8)| First stress invariant $I_{\sigma}$ | |Q(9)| Stress deviator second invariant $II_s$ | |Q(10)| | |Q(11)| | |Q(12)| | |Q(13)| Actualised value of inelastic volume strain in CAP : $\varepsilon_v^c$ | |Q(14)| Actualised value of equivalent plastic strain in DEV. : $\bar{e}_d$ | |Q(15)| Actualised value of cohesion $c$ | |Q(16)| Actualised value of Coulomb’s friction angle for compressive paths $\phi_C$ | |Q(17)| Actualised value of Coulomb’s friction angle for extensive paths $\phi_E$ | |Q(18)| Not used | |Q(19)| Number of sub-intervals used for the integration NINTV | |Q(20)| Memory of localisation calculated during the re-meshing | |Q(21)$\rightarrow$Q(32)| Reserved for bifurcation | ===== Formulation ===== ==== Loading and potential surfaces ==== The stresses and stress invariants are : \[I_{\sigma} = \sigma_{ij}\quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} \] \[II_{\hat{\sigma}}=\sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}}\quad ;\quad III_{\hat{\sigma}} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki}\] \[\beta =-\frac{1}{3}\sin^{-1}\left(\frac{3\sqrt{3}}{2}\frac{III_{\hat{\sigma}}}{II^3_{\hat{\sigma}}}\right)\] === Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen) === The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with: * Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$ * Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.\\ The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ ) === Criterion with friction angle equal to 0 (Von Mises criterion) === \[f=II_{\hat{\sigma}}-\frac{2c}{\sqrt{3}} = 0\] ==== Hardening/softening ==== Hardening/softening is assumed to be represented by the evolution of friction angles and/or cohesion as a function of the Von Mises equivalent plastic strain : \[\varepsilon_{eq}^p=\sqrt{\frac{2}{3}\hat{\varepsilon}_{ij}^p\hat{\varepsilon}_{ij}^p}\] Hyperbolic functions are used : - If ILODE = 1 or 2 : \[\phi_C=\phi_{C0}+\frac{(\phi_{Cf}-\phi_{C0})\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\]\[c=c_0+\frac{(c_f-c_0)\varepsilon_{eq}^p}{B_c+\varepsilon_{eq}^p}\] - Only if ILODE = 2 : \[\phi_E=\phi_{E0}+\frac{(\phi_{Ef}-\phi_{E0})\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\] where coefficients $B_p$ and $B_c$ are respectively the values of equivalent plastic strain for which half of the hardening/softening on friction angles and cohesion is achieved (see figure below). {{ :laws:epmohr2.png?600 |}} ===== Structure of PARAM ===== |PARAM(1,ILAW)| ZERO | | |PARAM(2,ILAW)| E_PAR1 | First elastic parameter | |PARAM(3,ILAW)| E_PAR2 | Second elastic parameter | |PARAM(4,ILAW)| E_PAR3 | Third elastic parameter | |PARAM(5,ILAW)| E_PAR4 | Fourth elastic parameter | |PARAM(6,ILAW)| COH | Cohesion value | |PARAM(7,ILAW)| PCONS0 | Pre-consolidation pressure\\ If PCONSO0=0, OCR is used) | |PARAM(8,ILAW)| AI1MIN | Minimum value of $I_{\sigma}$ for non-linear elasticity | |PARAM(9,ILAW)| PHIC | Coulomb's angle (in degrees) for compression | |PARAM(10,ILAW)| PHIE | Coulomb's angle (in degrees) for extension | |PARAM(11,ILAW)| AN | Van Eekelen exponent (default value=-0.229) | |PARAM(12,ILAW)| POROS0 | Initial soil porosity ($n_o$) | |PARAM(13,ILAW)| ECRO | | |PARAM(14,ILAW)| DIV | Parameter for the computation of NINTV (if NINTV=0) | |PARAM(15,ILAW)| RHO | Specific mass | |PARAM(16,ILAW)| BIOPT | ??? | |PARAM(17,ILAW)| OCR | | ^ Visco-parameters for CAP case -"c" ^^^ |PARAM(18,ILAW)| ALPHAC | Visco-plastic parameter for $\alpha_c=\left(\frac{f_c}{p_0}\right).\alpha_c$ | |PARAM(19,ILAW)| OMEGA | Viscosity parameter for $\gamma_c$ | |PARAM(20,ILAW)| AIOT | Viscosity parameter for $\gamma_c$ | |PARAM(21,ILAW)| PATM | Atmospheric pressure, defined two times for IELA=4 | ^ Visco-parameters for DEVIATORIC case -"d" ^^^ |PARAM(22,ILAW)| A2D in degree ($\phi$) | Parameter $a_2$ for $\gamma_d=a_2\gamma_c$ | |PARAM(23,ILAW)| ALPHAD | Parameter $\alpha_d$ for $\Phi_d=\left(\frac{f_d}{p_0}\right)^{\alpha_d}$ | ^ Parameters for failure hardening laws ^^^ |PARAM(24,ILAW)| PHIC0 | $\phi_{C0}$ | |PARAM(25,ILAW)| PHICF | $\phi_{Cf}$ | |PARAM(26,ILAW)| BPHI | $B_p$ | |PARAM(27,ILAW)| PHIE0 | $\phi_{E0}$ | |PARAM(28,ILAW)| PHIEF | $\phi_{Ef}$ | |PARAM(29,ILAW)| COH0 | $c_0$ | |PARAM(30,ILAW)| COHF | $c_f$ | |PARAM(31,ILAW)| BCOH | $B_c$ | |PARAM(32,ILAW)| PSIC | $\psi_C$ \\ IECPS = 1 : not used \\ IECPS = 0 : PSIC = const=PARAM(32) | |PARAM(33,ILAW)| PSIE | $\psi_E$ \\ IECPS = 1 : not used \\ IECPS = 0 : PSIE = const=PARAM(33) | |PARAM(34,ILAW)| PHMPS | TAYLOR constant, used if IECPS=1 \\ then PSIC = PHIC-PHMPS \\ PSIE = PHIE - PHMPS |