====== ORTHOPLATRA ====== ===== Description ===== Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with non-linear anisotropic elasticity. Isotropic hardening/softening of friction angle and cohesion is possible. Tensile criterion for desiccation cracking included. Isotropic hardening/softening of tensile strength is possible. \\ This law is a variation of ORTHOPLA including a tensile failure criterion. ==== The model ==== This law is used for mechanical analysis of elasto-plastic anisotropic porous media undergoing drying (large strain). It is primarily used to predict desiccation cracks onset (can be used for other tensile loading configurations). === Tensile criterion === \[f = II_2 +\frac{1}{(3.\cos\beta-\sqrt{3}\sin\beta)}.(I_1-3.\sigma'_t)\] where $I_1$, $II_2$ are respectively the first invariant of the stress tensor and the second invariant of the deviatoric stress tensor. $\beta$ is Lode's angle and $\sigma_t$ is the material tensile strength. \\ {{ :laws:orthoplatra1.png?600 |}} === Peron's formulation for tensile strength variation with suction === \[\sigma_t'=\sigma_t'^{sat}-\left(k_2*\left(1-\exp\left(\frac{-k_1.s}{k_{20}}\right)\right)\right)\] where $\sigma_t'$ is the effective tensile strength, $\sigma_t'^{sat}$ is the saturated effective tensile strength, $k_1$ and $k_2$ are model parameters. $k_1$ controls the variation speed and $k_2$ is the maximum delta. {{ :laws:orthoplatra2.png?400 |}} ==== Files ==== Prepro: LORTHOPLATRA.F \\ ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 619| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (12I5) ^^ |NINTV| $\neq$ 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq$ 0 : Use of effective stresses in the constitutive law (See [[appendices:a8|Appendix 8]]) | |ICBIF| = 0 : nothing | |:::| = 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis) | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : circle in the deviatoric plane | |:::| = 2 : smoothed irregular hexagon in the deviatoric plane | |ILODEG| Shape of the flow surface in the deviatoric plane | |:::| = 1 : circle in the deviatoric plane | |:::| = 2 : smoothed irregular hexagon in the deviatoric plane | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined with PHMPS | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | |IREDUC| = 0 : nothing | |:::| = 1 : Phi-C reduction method | |ICOCA| = 0 : nothing | |:::| = 1 : Capillary cohesion formulation ($c = c_0+AK1.s+AK2.s^2$) | |:::| = 2 : $c=c_0+AK1.\log(s)+AK2$ | |:::| = 3 : Linear dependence of the elastic modulus to the suction $E_i=(1+AK2.s).E_{0,i}$ | |:::| = 4 : Dependence of the elastic modulus on the suction through an exponential relation $E_i=E_{0,i}+EK_i.(1+AK2.s).E_{0,i}$ | |:::| = 5 : Dependence of the elastic modulus on the mean stress state $E_i=E_{0,i}+EK_i.(\frac{p}{AK1})^{AK2}$ | |IBEDDING| Bedding orientation (normal to the bedding plane) | |:::| = 1 : bedding plane in $e_1e_2$ anisotropic plane (normal $e_3$) | |:::| = 2 : bedding plane in $e_1e_3$ anisotropic plane (normal $e_2$) | |:::| = 3 : bedding plane in $e_2e_3$ anisotropic plane (normal $e_1$) | |IANISO| = 0 : Anisotropy of cohesion with major principal stress orientation relative to bedding | |:::| = 1 : Anisotropy of cohesion by microstructure fabric tensor | |IVISCO| = 0 : nothing | |:::| = 1 to 3 : viscoplastic model | ==== Real parameters ==== ^ Line 1 (3G10.0) ^^ |ALPHA| Angle of rotation of the anisotropic axis around Z axis (see figure above) | |THETA| Angle of rotation of the anisotropic axis around $e_1$ axis (see figure above) | |PHI| Angle of rotation of the anisotropic axis around $e_2$ axis (see figure above) | ^ Line 2 (6G10.0) ^^ |E1| Elastic Young modulus E($e_1$) | |E2| Elastic Young modulus E($e_2$) | |E3| Elastic Young modulus E($e_3$) | |G12| Elastic shear modulus G($e_1e_2$) | |G13| Elastic shear modulus G($e_1e_3$) | |G23| Elastic shear modulus G($e_2e_3$) | ^ Line 3 (5G10.0) ^^ |ANU12| Poisson ratio NU($e_1e_2$) | |ANU13| Poisson ratio NU($e_1e_3$) | |ANU23| Poisson ratio NU($e_2e_3$) | |RHO| Specific mass | |DIV| Size of sub-steps for computation of NINTV (only if NINTV=0, Default value=$5.D-3$) | ^ Line 4 (7G10.0) ^^ |PSIC| Dilatancy angle (in degrees) for compressive paths | |PSIE| Dilatancy angle (in degrees) for extensive paths (iff ILODEG=2) | |PHMPS| Constant value for definition of (????!!!!) | |BIOPT| Bifurcation computation parameter | |AK1| Capillary cohesion first parameter | |AK2| Capillary cohesion second parameter | |DECCOH| Cohesion hardening shifting | ^ Line 5 (7G10.0) ^^ |PHICF| Final Coulomb's angle (in degrees) for compressive paths | |PHIEF| Final Coulomb's angle (in degrees) for extensive paths (iff ILODEF=2) | |RAYPHIC| Ratio between initial and residual friction angle for compressive paths | |BPHI| Only if there is hardening/softening | |AN| Van Eekelen exponent (default value = -0.229) | |DECPHI| Coulomb's angle hardening shifting | |RAYPHIE| Ratio between initial and residual friction angle for extensive paths (iff ILODEF=2) | ^ Line 6 (6G10.0) ^^ |COHF0| Residual value of cohesion for major principal stress 1 perpendicular to the bedding plane (parallel to the normal to the bedding plane) (if IANISO=0) | |:::| = COHC0 = $c_0$ (if IANISO=1) (See paragraph 7.4) | |COHFMIN| Minimal residual value of cohesion (if IANISO=0) | |:::| = COHAISO = $A_{11}$ (if IANISO=1) (See paragraph 7.4) | |COHF90| Residual value of cohesion for major principal stress 1 parallel to the bedding plane (perpendicular to the normal to the bedding plane) (if IANISO=0) | |:::| = COHB1 = $b_1$ (if IANISO=1) (See paragraph 7.4) | |ANGLEMIN| Angle between the normal to the bedding plane and the major principal stress 1 for which the cohesion is minimum (if IANISO=0) | |:::| = COHB2 = $b_2$ (if IANISO=1) (See paragraph 7.4) | |RAYCOH| Ratio between initial and residual cohesion | |BCOH| Only if there is hardening/softening | ^ Line 7 (7G10.0) ^^ |SIGMAT0| Initial value of the uniaxial tensile strength | |SIGMATF| Final value of the uniaxial tensile strength (for hardening/softening) | |AKSIGMAT1| First parameter of Peron's formulation to account for the tensile strength evolution with suction | |AKSIGMAT20| Initial value of the second parameter of Peron's formulation to account for the tensile strength evolution with suction | |AKSIGMAT2F| Final value of the second parameter of Peron's formulation to account for the tensile strength evolution with suction (for hardening/softening) | |BSIGMAT| Only if there is hardening/softening | |PSI2| Dilatancy angle for the tensile criterion | ^ Line 8 (3G10.0) ^^ |EK1| Model parameter for non-linear elasticity (depending on ICOCA) | |EK2| Model parameter for non-linear elasticity (depending on ICOCA) | |EK3| Model parameter for non-linear elasticity (depending on ICOCA) | ===== Stresses ===== ==== Number of stresses ==== 4 for 2D analysis ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For 2D analysis : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 54 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 42 in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| = Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Actualised specific mass | |Q(3)| Reduced deviatoric stress (varies from 0 to 1) | |Q(4)| = 0 if the current state is elastic | |:::| = 1 if the current state is elasto-plastic | |Q(5)| Equivalent viscoplastic shear strain, i.e. the generalised plastic distortion, which increment is $\dot{\gamma}_{vp}=\sqrt{\frac{2}{3}\dot{e}_{ij}^{vp}\dot{e}^{vp}_{ij}}$) (see PLASOL) | |Q(6)| Equivalent strain n°1 $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$ | |Q(7)| Equivalent strain indicator n°1 (Villote n°1) $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$ | |Q(8)| $=\varepsilon_{xx}$ | |Q(9)| $=\varepsilon_{yy}$ | |Q(10)| $=\varepsilon_{zz}$ | |Q(11)| $=\gamma_{xy}=2.\varepsilon_{xy}$ | |Q(12)| Equivalent strain n°2 $\varepsilon_{eq2}=\int\Delta\varepsilon_{eq}$ | |Q(13)| Equivalent strain indicator n°2 (Villote n°2) $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$ | |Q(14)| Actualised value of equivalent plastic strain $\varepsilon^p_{eq}$ | |Q(15)| Actualised value of cohesion for bedding perpendicular to 1st principal stress | |:::| = COHF0 (if IANISO=0) or COHC0 (if IANISO=1) | |Q(16)| Actualised value of cohesion $c$ | |Q(17)| Actualised value of Coulomb's friction angle for compressive paths $\phi_C$ | |Q(18)| Actualised value of Coulomb's friction angle for extensive paths $\phi_E$ | |Q(19)| = 0 if the stress state is not at the criterion apex | |:::| = 1 if the stress state is at the criterion apex | |Q(20)| Number of sub-intervals used for the integration | |Q(21)| Memory of localisation calculated during the re-meshing | |Q(22)| ? | |Q(23)| ? | |Q(24)| ORIENTBED | |Q(25)| Dilatancy angle in compression | |Q(26)| Dilatancy angle in extension | |Q(27)| Damage variable | |Q(28)| x plastic deformation | |Q(29)| y plastic deformation | |Q(30)| z plastic deformation | |Q(31)| xy plastic deformation | |Q(32)| Saturated effective material tensile strength | |Q(33)| First invariant of the strength sensor | |Q(34)| Second invariant of the deviatoric strength sensor | |Q(35)| Lode's angle | |Q(36)| Effective material tensile strength | |Q(37)| Volumic plastic strain generated by the tensile failure criterion | |Q(38)| E1 | |Q(39)| E2 | |Q(40)| E3 | |Q(41)| Saturation degree * suction | |Q(42)| Second model parameter for Peron's formulation | |Q(43)$\rightarrow$Q(54)| Reserved for bifurcation |