Table of Contents

ORTHO3D

Description

Orthotropic elastic constitutive law for solid elements at constant temperature.

The model

This law is used for mechanical analysis of orthotropic elasticity undergoing large strains.

Orthotropic elasticity

There are 9 independent parameters : $E_1$, $E_2$, $E_3$, $\nu_{12}$, $\nu_{13}$, $\nu_{23}$, $G_{12}$, $G_{13}$, $G_{23}$. The elastic compliance tensor is : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_1} & \frac{-\nu_{21}}{E_2} & \frac{-\nu_{31}}{E_3} & & & \\ \frac{-\nu_{12}}{E_1} & \frac{1}{E_2} & \frac{-\nu_{32}}{E_3} & & & \\ \frac{-\nu_{13}}{E_1} & \frac{-\nu_{23}}{E_2} & \frac{1}{E_3} & & & \\ & & & \frac{1}{2G_{12}} & & \\ & & & & \frac{1}{2G_{13}} & \\ & & & & & \frac{1}{2G_{23}}\\ \end{bmatrix}\]

The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{21}}{E_2} = \frac{\nu_{12}}{E_1} \quad , \quad \frac{\nu_{31}}{E_3} = \frac{\nu_{13}}{E_1} \quad , \quad \frac{\nu_{23}}{E_2} = \frac{\nu_{32}}{E_3} \]

Moreover, the strain energy function must be positive (i.e. the quadratic form is said positive definite) : \[\mathbf{U} = \frac{1}{2} \varepsilon_{ij}\varepsilon_{kl}C_{ijkl} > 0\]

Thus, the condition below must be satisfied : \[1 - \nu_{12}\nu_{21} > 0 \quad ; \quad 1 - \nu_{13}\nu_{31} > 0 \quad ; \quad 1 - \nu_{23}\nu_{32} > 0\]\[1-\nu_{12}\nu_{23}\nu_{31}-\nu_{21}\nu_{13}\nu_{32} - \nu_{12}\nu_{21} - \nu_{13}\nu_{31} - \nu_{23}\nu_{32} > 0 \]\[E_1 > 0 \quad ; \quad E_2 > 0 \quad ; \quad E_3 > 0\]\[G_1 > 0 \quad ; \quad G_2 > 0 \quad ; \quad G_3 > 0\]

By inverting the matrix, the elastic tensor is then : \[C^e_{ijkl} = \begin{bmatrix} \frac{1-\nu_{23}\nu_{32}}{E_2E_3det} & \frac{\nu_{21}+\nu_{31}\nu_{23}}{E_2E_3det} & \frac{\nu_{21}\nu_{32}+\nu_{31}}{E_2E_3det} & & & \\ \frac{\nu_{12}+\nu_{13}\nu_{32}}{E_1E_3det} & \frac{1-\nu_{13}\nu_{31}}{E_1E_3det} & \frac{\nu_{32}+\nu_{31}\nu_{12}}{E_1E_3det} & & & \\ \frac{\nu_{13}+\nu_{23}\nu_{12}}{E_1E_2det} & \frac{\nu_{23}+\nu_{21}\nu_{13}}{E_1E_2det} & \frac{1-\nu_{21}\nu_{12}}{E_1E_2det} & & & \\ & & & 2G_{12} & & \\ & & & & 2G_{13} & \\ & & & & & 2G_{23} \\ \end{bmatrix}\] with $det=\dfrac{1-\nu_{31}\nu_{13}-\nu_{21}\nu_{12}-\nu_{32}\nu_{23}-2\nu_{31}\nu_{12}\nu_{23}}{E_1E_2E_3}$

Cross-anisotropic elasticity

There are 5 independent parameters : ${E_{\parallel}}$, ${E_{\perp}}$, ${\nu_{\parallel\parallel}}$, ${\nu_{\parallel\perp}}$, ${G_{\parallel,\perp}}$.

From orthotropic elasticity let us consider ($e_1$,$e_2$) as the isotropic plane (bedding plane for sedimentary rock) and $e_3$ the normal to this plane. The subscripts ${\parallel}$ and $\perp$ indicates, respectively, the direction parallel to bedding and perpendicular to bedding. \[{E_1=E_2=E_{\parallel}}\quad , \quad {E_3=E_{\perp}}\]

The elastic compliance tensor becomes : \[D^e_{ijkl} = \begin{bmatrix} \frac{1}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\parallel}}{E_{\parallel}} & \frac{1}{E_{\parallel}} & \frac{-\nu_{\perp\parallel}}{E_{\perp}} & & & \\ \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{-\nu_{\parallel\perp}}{E_{\parallel}} & \frac{1}{E_{\perp}} & & & \\ & & & \frac{1}{2G_{\parallel\parallel}} & & \\ & & & & \frac{1}{2G_{\parallel\perp}} & \\ & & & & & \frac{1}{2G_{\parallel\perp}}\\ \end{bmatrix}\]

The compliance elastic tensor is symmetric (Love, 1944), thus the equalities blow must be satisfied : \[\frac{\nu_{\perp\parallel}}{E_{\perp}} = \frac{\nu_{\parallel\perp}}{E_{\parallel}}\]

In the isotropic plane, the shear modulus is obtained as follow : \[G_{\parallel\parallel} = \frac{E_{\parallel}}{2(1+\nu_{\parallel\parallel})}\]

Because of the symmetry of the stress and strain tensors : \[G_{\parallel\perp}=G_{\perp\parallel}\]

Rotation

The Hooke’s law is defined in the orthotropic axes for orthotropic elasticity. As a result, a change of the reference system is needed to obtain the stress in the global axes. In the purpose of estimating the stresses in the global axes, a relation taking into account this change in the reference system is proposed. This relation is (Cescotto, 1995) : \[\sigma_{ij} = R_{ik}R_{jl}\sigma'_{kl}\] where $R_{ij}$ is a component of the matrix of rotation, $\sigma_{ij}$ the stress in the orthotropic axes and $\sigma'_{ij}$ the stresses in the current configuration. 

Generally, the matrix of rotation is characterized by the Euler’s angles. The positive direction of rotation is counter-clockwise.

The (X,Y,Z) space represents the current configuration (or global configuration) while the ($\underline{e_1}$,$\underline{e_2}$,$\underline{e_3}$) space represents the orthotropic configuration. To define the rotation, let consider that the cartesian system are equal. The rotation is decomposed in 3 steps and the definition of the angles will be:

The matrix which defines the rotation may be written : \[R = \begin{bmatrix} \cos\alpha\cos\phi & \sin\alpha\cos\phi & -\sin\phi \\ -\sin\alpha\cos\theta+\sin\theta\sin\phi\cos\alpha & \cos\alpha\cos\theta+\sin\theta\sin\phi\sin\alpha & \sin\theta\cos\phi \\ \sin\theta\sin\alpha +\cos\alpha\sin\phi\cos\theta & \sin\phi\sin\alpha\cos\theta-\sin\theta\cos\alpha & \cos\phi\cos\theta \end{bmatrix}\]

Files

Prepro : LORTHO.F
Lagamine: ORTHO3D.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 605
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTV $\neq$ 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step 
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV 
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law. See Appendix 8

Real parameters

Line 1 (3G10.0)
ALPHA Angle of rotation of the anisotropic axis around Z axis (see figure below)
THETA Angle of rotation of the anisotropic axis around $e_1$ axis (see figure below)
PHI Angle of rotation of the anisotropic axis around $e_2$ axis (see figure below)
Line 2 (6G10.0)
E1 Elastic Young modulus E($e_1$)
E2 Elastic Young modulus E($e_2$)
E3 Elastic Young modulus E($e_3$)
G12 Elastic shear modulus G($e_1e_2$)
G13 Elastic shear modulus G($e_1e_3$)
G23 Elastic shear modulus G($e_2e_3$)
Line 3 (5G10.0)
ANU12 Poisson ration NU($e_1e_2$)
ANU13 Poisson ration NU($e_1e_3$)
ANU23 Poisson ration NU($e_2e_3$)
RHO Specific mass 
DIV Size of sub-steps for computation of NINTV (only if NINTV = 0, Default value = 5.D-3 )

Stresses

Number of stresses

6 for 3D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

State variables

Number of state variables

0 (see ELA3D)

List of state variables

Q(1) = 0