Table of Contents

MIPAY3

Description

Anisotropic elasto-plastic law based on texture for solid elements at constant temperature.

MIcroscopic PArt Yield law 3D

The model

This law is used for mechanical analysis of elasto-plastic anisotropic solids undergoing large strains. Isotropic hardening is assumed.

Files

Prepro: LMIPAY.F
Lagamine: MIPAY3.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
Texture data being read as metallurgical data, this constitutive law MUST BE THE FIRST one (IL=1)
ITYPE 501
COMMNT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (6I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
NCRI Number of crystals for each integration point (400 or 1600) (to be in accordance with *.MET)
NNLP Maximum number of steps without re-actualisation of the yield locus
NTEMPO Number of TEMPO variables per integration point (=65)
IMETH Type of anisotropic yield surface to be used
= -1 : No updated HILL without discretized yield locus
= +1 : No updated HILL with discretized yield locus
= -2 : No updated J. WINTERS no discretized yield locus (6 order series in stresses space)
= +2 : No updated B. van BAEL discretized yield locus (6 order series in strains space)
= +3 : No updated U.L.G. yield locus
= +4 : Updated U.L.G. yield locus
= -5 : Taylor plasticity with no yield locus
IKAP = 0 : Analytical compliance matrix (available only for IMETH=-2)
= 1 : Perturbation compliance matrix (general case)
= 2 : Compliance matrix always the elastic one (available only for IMETH =-5)

Real parameters

Line 1 (5G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
CK Hardening factor K (see below)
GAMMA$\phi$ Hardening GAMMA$\phi$ coefficient ($\Gamma^{\circ}$) (see below)
CN Hardening exponent (see below)
Line 2 (6G10.0)
THETA$\phi$ = 10 
THETAMAX = 85
CMIN = 0,2
FLIMIT = 0,05
SLIMIT = 0,025 
TOL = 1.10-7

The last 6 parameters are temporary values. See report 11 of research Micro-Macro (RW 2748).

Only if IMETH=1 (HILL) :

Line 1 (6G10.0) : HILL's coefficient
ALPHA12 $\alpha_{12}$
ALPHA13 $\alpha_{13}$
ALPHA23 $\alpha_{23}$
ALPHA44 $\alpha_{44}$
ALPHA55 $\alpha_{55}$
ALPHA66 $\alpha_{66}$
Line 2 (1G10.0)
SIG$\phi$ Uniaxial yield stress in a reference direction

Stresses

Number of stresses

6 for 3D state

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

State variables

Number of state variables

2

List of state variables

Q(1) Yield indicator
= 0 : Current state is elastic
= 1 : Current state is elasto-plastic
Q(2) GAMMA hardening parameter ($\Gamma$)

Hardening form

- For IMETH$\neq$1 : in this case, the yield surface is scaled by the critical resolved shear stress $\tau$ : \[\tau=K(\Gamma^{\circ}+\Gamma)^N\] - For IMETH=1 : in this case, the yield surface is scaled by $\sigma_{eq}$ : \[\sigma = K(\varepsilon_0+\varepsilon)^n\]

File *.MET

for META=4 , IMETH=-5.

For each material :

Line 1 (1I5)
NGLI Number of slip system in the crystal
Line 2-3-4-… (NGLI lines) (8G10.0)
NORMAL(3) Vector $\perp$ to the slip plane
DIRECTION(3) Vector direction of the slip
CRSS+ Critical resolved shear stress + if slip in positive direction
CRSS- Critical resolved shear stress - otherwise
Line 2 + NGLI and following ones (NCRI lines) (I5,4(1F13.5)
ICRI Crystal number (increasing order from 1 to NCRI)
WEIGHT Crystal weight
EULER Euler angles to define crystal orientation
Phi_1 / Phi / Phi _2