====== MINTY3_KI ====== ===== Description ===== Anisotropic elasto-plastic law based on texture for solid elements at constant temperature combined with the microstructure hardening model of C. TEODOSIU.\\ __M__icroscopic __INT__erpolated __Y__ield locus __3__D __KI__nematic ==== The model ==== This law is used for mechanical analysis of elasto-plastic anisotropic solids undergoing large strains. Isotropic or Isotropic & Kinematic (Teodosiu) hardening are assumed. ==== Files ==== Prepro: LMINTY_KI.F \\ Lagamine: MINTY3_KI.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO | |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number \\ Texture data being read as metallurgical data, this constitutive law MUST BE THE FIRST one (IL=1)| |ITYPE| 511| |COMMNT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (8I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |NCRI| Number of crystals for each integration point \\ (to be in accordance with *.MET) | |NNLP| Maximum number of steps without re-actualisation of the yield locus | |NTEMPO| Number of TEMPO variables per integration point \\ (NTEMPO=100 for IMETH=5, 7, 9 or 11 and NTEMPO=109 for IMETH=6, 8, 10 or 12) | |IMETH| Type of anisotropic yield surface to be used | |:::| = -1 : No updated HILL with no discretized yield locus | |:::| = +1 : No updated HILL with discretized yield locus | |:::| = -2 : No updated J. WINTERS with no discretized yield locus (6 order series in stresses space) | |:::| = +2 : No updated B. van BAEL with discretized yield locus (6 order series in strains space) | |:::| = +3 : No updated U.L.G. yield locus | |:::| = +4 : Updated U.L.G. yield locus | |:::| = +5 : Taylor model without updating | |:::| = +6 : Taylor model with updating | |:::| = +7 : Bishop-Hill model without updating | |:::| = +8 : Bishop-Hill model with updating | |:::| = +9 : Visco-plastic Taylor model without updating | |:::| = +10 : Visco-plastic Taylor model with updating | |:::| = +11 : ALAMEL model without updating | |:::| = +12 : ALAMEL model with updating | |IKAP| = 0 : Analytical compliance matrix | |:::| = 1 : Perturbation compliance matrix | |MAXIT| Maximum number of iterations during stress integration |NINTEPS| Number of sub-intervals per unit of delta epsilon | |VOCE| | Thus, the number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON). ^ Line 1 (1I5) ^^ |NTEO| = 0 : Classic hardening | |:::| = 1 : Teodosiu hardening | __If NTEO = 1 :__ ^ Line 1 (3I5) ^^ |NREAD| = 1 : Read the 58 state variables in .f72 (in column) | |KREAD| = 1 : Changes hardening parameters if fitted with a Von Mises yield locus and shear tests | |:::| = 2 : Automatically performed in Lagamine | |IOPTEO| = 10 : Hofferlin type. $S_L$ only activated if a path change with an elastic transition occurs | |:::| = 20 : Alves type. $S_L$ activated for any path change (continuous path change or even local path change, for example simple shear where material frame rotates) | |:::| = 21 : Alves type but $S_L$ activated only if a sufficiently strong path change occurs $\rvert\Delta\hat{\varepsilon}_{n+1}^p-\Delta\hat{\varepsilon}_n^p\rvert\geq prec$, where $n$ and $n+1$ are two successive steps and $\Delta\hat{\varepsilon}^p$ is the increment of the local plastic strain | __Only if KREAD=1 :__ ^ Line 1 (1G10.0) ^^ |COEFK| Value to correct Teodosiu's parameters | ==== Real parameters ==== ^ Line 1 (3G10.0) ^^ |E| YOUNG's elastic modulus | |ANU| POISSON's ratio | |THETA$\phi$| Angle between stress nodes for the yield locus interpolation | __If NTEO=1__, the 3 following parameters can be equal to 0 : ^ Line 1 (3G10.0) ^^ |CK| Hardening factor K (see below) | |GAMMA$\phi$| Hardening GAMMA$\phi$ coefficient ($\Gamma^{\circ}$) (see below) | |CN| Hardening exponent (see below) | __If IMETH=9 or 10__ : ^ Line 1 (1G10.0) ^^ |H| Visco-plastic parameter \\ (=1/$m$ with $m$ the strain rate sensitivity parameter) | __Only if NTEO=1 :__ Theodosius hardening parameters : ^ Line 1 (2G10.0) ^^ |CP| Polarity saturation rate | |NP| Polarity exponent | ^ Line 1 (5G10.0) ^^ |CSD| Orientation saturation rate for $S_D$ | |CSL| Orientation saturation rate for $\underline{\underline{S_L}}$ | |SSAT0| Initial orientation saturation value | |NL| Orientation exponent | |R0| Initial yield limit | ^ Line 1 (2G10.0) ^^ |CX| Back stress saturation rate | |XSAT0| Initial back stress saturation value | ^ Line 1 (2G10.0) ^^ |M| Influence of $\underline{\underline{S}} on kinematic ($m=0$) - isotropic ($m=1$) hardening | |Q| $S_D-\underline{\underline{S_L}}$ balance on $X_{sat}$ | ^ Line 1 (2G10.0) ^^ |CR| Isotropic hardening : saturation rate | |RSAT| Isotropic hardening : saturation value | __Only if IMETH=$\pm$1__ (HILL) : ^ Line 1 : HILL's coefficient ^^ |ALPHA12| $\alpha_{12}$ | |ALPHA13| $\alpha_{13}$ | |ALPHA23| $\alpha_{23}$ | |ALPHA44| $\alpha_{44}$ | |ALPHA55| $\alpha_{55}$ | |ALPHA66| $\alpha_{66}$ | ^ Line 2 ^^ |SIG$\phi$| Uniaxial yield stress in a reference direction | ===== Stresses ===== ==== Number of stresses ==== 6 ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| ===== State variables ===== ==== Number of state variables ==== = 7 if NTEO=0 \\ = 62 if NTEO=1 ==== List of state variables ==== __If NTEO=0 : __ |Q(1)| Accumulated plastic strains | |Q(2)| GAMMA hardening parameter ($\Gamma$) | |Q(3)$\rightarrow$Q(7)| 5 components of the plastic strain rate direction | __If NTEO=1 :__ |Q(1)| IYIELD | |:::| = 0 : Elastic | |:::| = 1 : Plastic | |Q(2)| pd (for printing) | |Q(3:7)| 5 components of the plastic strain rate direction | |Q(8:13)| 6 components back stress X | |Q(20)| SD (for printing) | |Q(21:56)| 36 components of $S_L$ | |Q(57)| $\rvert$S$\rvert$ (for printing) | |Q(58)| R | |Q(59:62)| Internal parameters (for printing) | ==== Hardening form ==== __NTEO=0 :__ - For IMETH$\neq$1 : in this case, the yield surface is scaled by the critical resolved shear stress $\tau$ : \[\tau=K(\Gamma^{\circ}+\Gamma)^N\] - For IMETH=1 : in this case, the yield surface is scaled by $\sigma_{eq}$ : \[\sigma = K(\varepsilon_0+\varepsilon)^n\] __NTEO=1 :__ Depicted in internal report\\ File *.MET for META=4, IMETH=5 to 12.\\ For each material : ^ Line 1 (1I5) ^^ |NGLI| Number of slip system in the crystal | ^ Line 2-3-4-... (NGLI lines) (8G10.0) ^^ |NORMAL(3)| Vector $\perp$ to the slip plane | |DIRECTION(3)| Vector direction of the slip | |CRSS+| Critical resolved shear stress + if slip in positive direction | |CRSS-| Critical resolved shear stress - otherwise | ^ Line 2 + NGLI and following ones (NCRI lines) (I5,4(1F13.5) ^^ |ICRI| Crystal number (increasing order from 1 to NCRI) | |WEIGHT| Crystal weight | |EULER| Euler angles to define crystal orientation \\ Phi_1 / Phi / Phi _2 |