User Tools

Site Tools


laws:metamec

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
laws:metamec [2019/08/23 16:48]
helene created
laws:metamec [2020/08/25 15:46] (current)
Line 92: Line 92:
 |Q(13)| Current equivalent (VON MISES) value of the stresses influencing the kinematics of phase transformations by diffusion | |Q(13)| Current equivalent (VON MISES) value of the stresses influencing the kinematics of phase transformations by diffusion |
  
-===== Special file ===== +===== MET file ===== 
- +See [[appendices:a12|Appendix 12: *.MET file]]
-The special file is the number 35, generally called IN.MET and read by METLAW in PREPRO.\\ +
- +
-This file contains all the data necessary to use effectively the laws METAMEC, THMET and ARBTHMEC or ELAMET. It must always exist to perform a metallurgic mechanic thermal analysis. Sections 1. to 8. are repeated with increasing ILAWN if more than one steel is described. +
- +
-==== 1. Title (A70) ==== +
- +
-Any comment that will be reproduced on the output listing. Try to characterise your steel (60NCD11, ARBED, 42CD4, ...). +
- +
-==== 2. General data ==== +
- +
-^ Line 1 (10I5,​G10.0,​2I5) ^^ +
-|ILAWN| Number of the steel described. This number is entered under reference number IMETA by the law META | +
-|IMPER| = 0 : No impression | +
-|:::| = 1 : Impression on file number 36 generally called IN.OUM | +
-|NTPCA| Number of parameters in section 4, usually defined to 20 | +
-|NPA| Number of parameters described by polynomials (section 4) | +
-|NDPO| Maximum degree of polynomials | +
-|NVM| Number of mechanical parameters in section 7 | +
-|:::| = 3 if ELAMET is used| +
-|:::| = 5 if ARB THMEC is used and if NPA = 5 | +
-|:::| = 10 if ARB THMEC is used and if NPA = 0 | +
-|NT1| Maximum number of temperatures in the data tables related to proeutectoïd | +
-|NT2| Maximum number of temperatures in the data tables related to pearlite | +
-|NT3| Maximum number of temperatures in the data tables related to bainite | +
-|NTEMP| Maximum number of temperatures in the data tables related to mechanical parameters (section 7) | +
-|DT| Temperature used during the simulation | +
-|:::| = temperature given in the .MET file + DT (a non-null value can be used if the temperature values in the .DAT file are expressed using a unity that is different from the temperatures in the .MET file, for instance Celcius in one file and Kelvin in the other) | +
-|IPOLY| = 1 : Thermo-physical parameters $\lambda$, $\rho$, $C$, $H_v$ and $L$ are given as polynomials function of the temperature (section 6) | +
-|:::| = 0 : Thermo-physical parameters $\lambda$, $\rho$, $C$, $H_v$ and $L$ are given as data tables, functions of the temperature (section 6) | +
-|:::| The preprocessor displays explicit information on-screen about this parameter | +
-|IET| = 0 : Bilinear elastoplastic law | +
-|:::| = 1 : Multi-linear elastoplastic law (definition of the tangent modulus according to the strain level for each phase and temperature).\\ If IET=1 read NPES (number of strain levels for tangent modulus definition | +
- +
-==== 3. If IET=1 ==== +
- +
-If IET=1, then read NEPS (number of strain levels) (1I5). +
- +
-==== 4. Characteristic temperatures and other values ==== +
- +
-^Title (A5)^^ +
-|Title|"​TPCAR"​ from columns 1 to 5 | +
-^Parameters (7G10.0/​7G10.0/​6G10.0) ^^ +
-|$A_3$ or $A_{cm}$| $A_3$ : Equilibrium temperature for the beginning of the ferrite transformation | +
-|:::| $A_{cm}$ : Equilibrium temperature for the beginning of the cementite transformation | +
-|$A_1$| Equilibrium temperature for the eutectoïd transformation | +
-|TH| Under the temperature TH, the pearlitic transformation is not preceded by the proeutectoïd transformation | +
-|B_s| Temperature of the possible beginning of the bainitic transformation | +
-|B_f| Under this temperature the bainitic transformation is complete | +
-|M_s| Beginning temperature for the martensite transformation | +
-|AM| Coefficient of the Marburger law for the martensite transformation | +
-|FINCU| If no transformation has occurred when temperature B_s is reached, the SCHEIL'​s sum is multiplied by FINCU (generally FINCU=0.0) | +
-|CP_e| Values defining the shift in the diagram TTT : $D = C\ \sigma_{equivalent}$ for the ferrite and the pearlite | +
-|CB_a| Values defining the shift in the diagram TTT : $D = C\ \sigma_{equivalent}$ for the bainite | +
-|A| Values that gives the variation of M_s | +
-|B| $\Delta M_s = A \sigma_{moi} + B \sigma_{equivalent}$ | +
-|EXPR| $\gamma \rightarrow $ Pr | +
-|EXPE| $\gamma \rightarrow $ Pe : Dilatation due to the austenite transformation | +
-|EXBA| $\gamma \rightarrow $ Ba (the reference volume is the austenite at 0E C) | +
-|EXMA| $\gamma \rightarrow $ MA | +
-|K4=K3| Coefficient in the plasticity transformation formulae : ferrite, cementite, pearlite | +
-|K5| Coefficient in the plasticity transformation formulae : bainite | +
-|K6| Coefficient in the plasticity transformation formulae : martensite | +
-|TLIQUID| Temperature where the steel is considered to be fully liquid. Beyond this temperature,​ the preprocessor will automatically set the thermal dilatation coefficient to null values.\\ \textbf{Important : put an initial value even if you don't model liquid state} | +
- +
-__Remarks__ : Some additional parameters can occur depending on the steel and its plasticity transformation formula or the modification of the formula of the sift ($D=C\sigma$). If you want to change, you must adopt:  +
-  - NTPCA (section 7.2) ; +
-  - Subroutine METLAW that read and write with comments the parameters of section 7.3 ; +
-  - Subroutine ARMEA that read the great vector PAMET where are stocked the parameters of section 7.3 and where the formulae of $D$ and $\varepsilon^{pt}$ are implemented. +
- +
-==== 5. If IET = 1 ==== +
-^Title (A5)^ +
-|STLVL from columns 1 to 5 | +
-^ Parameters (G10.0) ^ +
-|Insert values of the NEPS strain levels (variable tangent modulus) (one G10.0 per line)| +
- +
-==== 6. Parameters described by polynomials of temperature ==== +
- +
-^Title (A5)^ +
-|POCOE from column 1 to 5| +
-^Parameters^ +
-|$\lambda$, $\rho$, $C$ and $H_v$ | +
-**If IPOLY = 1** : the conductivity $\lambda$, the mass density $\rho$, the heat capacity $C$ and the hardness $H_v$ have to be defined for each phase. The latent heat is defined for each transformation. You can choose the order in which you want to define these parameters : \\ +
-  * Firstly you give five letters: '​A1^A2'​ where:  +
-    - A1 defines the thermal parameter for $\lambda$, $\rho$, $C$ and $H_v$  +
-      * $\lambda \rightarrow$ LA +
-      * $\rho \rightarrow$ RO +
-      * $C \rightarrow$ CA +
-      * $H_v \rightarrow$ HV +
-    - A2 defines the phase  +
-      * Austenite $\rightarrow$ AU +
-      * Bainite $\rightarrow$ BA +
-      * Proeutectoïd $\rightarrow$ PR +
-      * Martensite $\rightarrow$ MA +
-      * Pearlite $\rightarrow$ PE +
-    - for L (latent heat) : A1 = TR and A2 = PR, PE, BA or MA to define in which phase the austenite is transformed. +
-  * Secondly you give the polynomial coefficient (A(I), I=1, NDPO+1) which defines the following polynomial: \[A(1)+\left(A(2)T+A(3)T^2+...+A(NDPO+1)T^{NDPO}\right)\] +
-  * Finally the non-defined parameters will be initialized to zero. So if you know that only certain phases will be present you do not need to define the other phase parameters. The end of this section is detected by A1=FI followed by a blank card. \\ +
-**If IPOLY = 0**: One must write FI followed by a blank card. +
- +
-==== 7. Mechanical parameters ==== +
- +
-  - Firstly you give five letters : '​A1^A2'​ and NTER where :  +
-    * A1 defines the mechanical parameter:​ +
-      * YOUNG modulus: YO +
-      * POISSON ratio: NU +
-      * Thermal dilatation: AC or AP (AC for the $\alpha$ coefficient of classical type and AP for the $\alpha$ coefficient of partial type) +
-      * Yield stress $\sigma_y$: SY +
-      * Plastic slope: ET +
-    * If IPOLY=0: +
-      * Thermal conductivity:​ LA +
-      * Mass density: RO +
-      * Heat capacity: CA +
-      * Vickers hardness: HV +
-      * Latent heat of transformation:​ TR +
-    * '​^'​ is a space; +
-    * A2 defines the phase concerned;​ +
-      * Austenite: AU (Except for A1=TR) +
-      * Proeutectoïd:​ PR +
-      * Pearlite: PE +
-      * Bainite: BA +
-      * Martensite: MA +
-    * NTER as the number of temperature used to describe the evolution of the parameter.\\ +
-  - Secondly, **ONLY IF** AC is chosen: \\ (A5,G10.0) 3 spaces and '​TO'​ or '​T0'​ \\ VALUE: Value of $T_0$ (usually $T_0$ is the room temperature so 20°C or 293K, be careful there is no default value for this parameter, so you should enter a value, otherwise the preprocessor will crash) +
-  - Thirdly, you repeat NTER times:  +
-    * TEMPE:​ Temperature +
-    * VALUE: Value of the parameter +
- +
-__Remarks :__ +
-  - No defined tables are initialized to zero +
-  - A1 = FI followed by a blank card indicates the end of section 5. +
-  - For the table describing ALPHA, the first temperature __must be__ zero otherwise the integration of $\int_0^{T_{\alpha}} dT$ will not be correct. \\ +
- +
-__Remarks about the thermal coefficient $\alpha$:​__ +
-  - The $\alpha_C$ coefficient of classical type is defined by : \[\alpha_C(T) = \frac{1}{L_0}\frac{L_{(T)}-L_0}{T-T_0}\] where $L_0=L(T_0)$.\\ The $\alpha_P$ coefficient of partial type is defined by \[\alpha_P(T)=\frac{1}{L_{(T)}}\frac{dL}{dT}\] The user could give the classical type or the partial type $\alpha$ coefficient (with AC or AP).\\ +
-  - If $\alpha$ is of classical type ($\alpha_C$) ​ +
-    ​The unity, chosen by the user, of $T_0$ has to be the same as the unity of the temperatures at which the $\alpha_C$ coefficient is given. +
-    * The temperatures,​ at which the $\alpha_C$ coefficient is given, have to be given in increasing order. +
-    * It is necessary to give at least 2 values of $\alpha_C$ at two temperatures. +
-    * Each $\alpha_C$ coefficient has to verify the following relation : \[1+\alpha_C(T).(T-T_0)>​0\;​\text{ and not equal to 0}\] +
-  - If the user gives the classical type $\alpha_C$ coefficient (AC), the pre-processor will calculate the partial type $\alpha_P$ coefficient. If the user gives the partial one, the pre-processor keeps these values. In the case of the calculus of the partial type $\alpha_P$ coefficient,​ the following relations are used (see the file ALPHAPARTIEL.F) for given couples ($T_i,​\alpha_{Ci}$) with $i=1,...,n$ : \[\alpha_{P1} = \frac{\alpha_{C1}+(T_1-T_0)\frac{\alpha_{C2}-\alpha_{C1}}{T_2-T_1}}{1+\alpha_{C1}(T_1-T_0)}\]\[\alpha_{Pn} = \frac{\alpha_{Cn}+(T_n-T_0)\frac{\alpha_{Cn}-\alpha_{Cn-1}}{T_n-T_{n-1}}}{1+\alpha_{Cn}(T_n-T_0)}\and for $i$ such as $1<​i<​n$:​ \[\alpha_{Pi}=\frac{\alpha_{Ci}+\frac{1}{2}(T_i-T_0)\left(\frac{\alpha_{Ci}-\alpha_{Ci-1}}{T_i-T_{i-1}}+\frac{\alpha_{Ci+1}-\alpha_{Ci}}{T_{i+1}-T_i}\right)}{1+\alpha_{Ci}(T_i-T_0)}\] +
-  - For more information about the $\alpha$ coefficient of classical and partial type, the reader could see the internal report N° M&​S/​2002-8 of the 5$^{th}$ December 2002 entitled "​Comparaison des coefficients de dilatation thermique classique et partiel"​. +
-  - An example of what the user should give is:  +
- +
-    AC AU    5 +
-        T0       0.0 +
-           ​0.0 ​  ​10.E-06 +
-         ​200.0 ​  ​12.E-06 +
-         ​400.0 ​  ​16.E-06 +
-         ​700.0 ​  ​25.E-06 +
-         ​900.0 ​  ​30.E-06 +
-    AC PE    2 +
-        T0       0.0 +
-           ​0.0 ​  ​10.E-06 +
-         ​900.0 ​  ​30.E-06 +
-    AP MA    5 +
-           ​0.0 ​  ​30.E-06 +
-         ​200.0 ​  ​25.E-06 +
-         ​400.0 ​  ​16.E-06 +
-         ​700.0 ​  ​12.E-06 +
-         ​900.0 ​  ​10.E-06 ​     +
- +
-==== 8. Description of TTT diagram ==== +
- +
-The three phases : proeutectoïd (PROEU), pearlite (PERLI) and bainite (BAINI) have to be described successively by sections 8.1. to 8.4. The order PROEU, then PERLI, then BAINI must be respected. +
- +
-=== Title ===  +
- +
-PROEU or PERLI or BAIN from columns 1 to 5 +
- +
-=== Maximum percentage of transformation === +
- +
-^ Line 1 (Title (A5,I5)) ^^ +
-|YMAXI| From columns 1 to 5 | +
-|NTR| Number of temperatures used to describe the evolution of the maximal percentage of transformation with the temperature | +
-^ Line 2 (Repeat NTR times (2G10.0)) ^^ +
-|TEMPE| Temperature | +
-|YMAX| Maximal percentage | +
- +
-=== Beginning of the transformation === +
- +
-^ Line 1 (Title (A5,I5)) ^^ +
-|TTPSD| From column 1 to 5 | +
-|NTR| Number of temperatures used to describe the evolution of the beginning transformation time with the temperature (TTT diagram description) | +
-^ Line 2 (Repeat NTR times (2G10.0)) ^^ +
-|TEMPE| Temperature| +
-|TPSDE| Beginning time of the transformation | +
- +
-=== Evolution of the transformation === +
- +
-^ Line 1 (Title (A5,​2G10.0,​I5)) ^^ +
-|TTPIS| From column 1 to 5 | +
-|PINF| Lower percentage | +
-|PSUP| Upper percentage | +
-|NTR| Number of temperatures used to describe the curve of the transformation of PINF and PSUP percent | +
-^ Line 2 (Repeat NTR times (3G10.0)) ^^ +
-|TEMPE| Temperature | +
-|TINF| | +
-|TSUP| | +
- +
-N.B. These data are used to compute $n$ and $b$, the coefficients of the Johnson-Mehl-Avrami law.\\ +
- +
-Remark : The NTR number must be limited by the data NT1, NT2 or NT3 given in section 7.2. for each phase (PROEU, PEARLI or BAINI).+
  
laws/metamec.1566571688.txt.gz · Last modified: 2020/08/25 15:35 (external edit)