====== MESO2 ====== DELETEME This law does not seem to exist in the code. \\ LMESO2.F does not exist. \\ ITYPE = 295 corresponds to law [[laws:fczm|FCZM]] ===== Description ===== Elastic visco-plastic constitutive law for solidification problem (continuous casting) (always used with [[laws:thsol2|THSOL2]]) ==== The model ==== For liquid element: ferrostatic pression\\ For solid element: EVP-law (see [[laws:grob|GROB]]) \\ For mushy element: EVP-law with parameters interpolated between solid and liquid state ==== Files ==== Prepro: LMESO2.F \\ ===== Availability ===== |Plane stress state|NO| |Plane strain state|NO| |Axisymmetric state|YES | |3D state|NO| |Generalized plane state|NO| ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 295| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing.| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |NINTV|number of sub-steps used to integrate numerically the constitutive equation in time-step| |METK|0 analytical stiffness matrix \\ 1 stiffness matrix computed by perturbation| |ISOL|0 use of total stresses in the constitutive law\\ 1 use of effective stresses in the constitutive law| ==== Real parameters ==== ^Line 1 (3G10.0)^^ |COOY|level of liquid surface| |TS|temperatures (see [[laws:thsol2|THSOL2]])| |TL|:::| ^Line 2 (7G10.0)^^ |EO|reference YOUNG's elastic modulus ($E_o$)| |BE|corresponding temperature coefficient ($b_E$)| |ANUO|reference POISSON's ratio ($\nu_0$)| |BNU|corresponding temperature coefficient ($b_\nu$)| |ANO|reference strain rate exponent ($n_o$)\\ let us recall that: \\ E=$E_o$exp($-b_o T$)\\ $\nu = \nu_o exp(\nu_K T$), where T is the absolute temperature (K)| |BO|reference strain rate coefficient ($B_o$)| |Q|corresponding temperature coefficient (Q)| ^Line 3 (7G10.0)^^ |AMO|reference hardening exponent ($m_o$)| |AKSO|reference hardening saturation coefficient ($K_{so}$)| |GAMMAO|reference hardening parameter ($\gamma_o$)| |TETAO|reference hardening coefficient ($\theta_o$)| |BTETA|corresponding temperature coefficient ($b_\theta$)| |AKOO|reference initial yield limit ($K_{oo}$) | |BK|corresponding temperature coefficient ($b_K$)| ^Line 4 (2G10.0)^^ |RGA2|perfect GAZ constant in correct unity system| |CTQ|TAYLOR QUINNEY coefficient\\ 0 for solidification case \\ < 0 for semi-coupled thermomechanical analysis when the $\sigma(8)$ has to be constant and null CTQ has to be used| ==== Number of stresses ==== 4 ==== Meaning ==== |SIG(1)| $\sigma_{11}$| |SIG(2)| $\sigma_{22}$ | |SIG(3)| $\sigma_{12}$| |SIG(4)| $\sigma_{33}$| ===== State variables ===== ==== Number of state variables ==== 3 ==== List of state variables ==== |Q(1)|THICK| |Q(2)| current yield limit in tension, its initial value is $K_o$ exp (-$b_K$ T), where T is the absolute temperature (K) | |Q(3)| $\varepsilon^{P}$ equivalent nonlinear strain|