====== LILYCQ ====== ===== Description ===== Ilyushin's type constitutive law for 3d shell ([[elements:coqj4|COQJ4]]) element. Use the resultant stresses directly. ==== The model ==== This law is only used for mechanical analysis of elasto-anisotropic plastic with linear anisotropic or non-linear isotropic hardening. The resultants stresses are used directly. ==== Files ==== Prepro: LILYCQ.F \\ Lagamine: CQ4ILY.F ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| = 34 | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |IND|Index of the thickness variable| |:::|= 0 the thickness is variable during deformation| |:::|= 1 it is constant during deformation.| |NPO|Number of points to define the uniaxial constitutive law ($\geq$ 0)| |NINTV|Number of sub-interval step for integrating the constitutive law ($\geq$ 0)| ==== Real parameters ==== **__Global Data__** ^Line 1 (3G10.0)^^ |E|Young Modulus | |ANU|Poisson's coefficient | |$D_{NM}$|the parameter for the couple of normal effort and moment.| |:::|= 0, it is decoupled| |:::|= 1, it is coupled| \[ f = \frac{1}{h^2}Q_{NN} + D_{NM} \frac{4}{\sqrt{3}h^3}Q_{NM} + \frac{16}{h^4}Q_{MM} - \sigma_y^2 \] Where \[ Q_NN = \alpha_{11}N_x^2 + \alpha_{22}N_y^2 + \alpha_{33}N_{xy}^2 - 2 \alpha_{12}N_xN_y \] \[ Q_MM = \alpha_{11}M_x^2 + \alpha_{22}M_y^2 + \alpha_{33}M_{xy}^2 - 2 \alpha_{12}M_xM_y \] \[ Q_NM = \alpha_{11}N_xM_x + \alpha_{22}N_yM_y + \alpha_{33}N_{xy}M_{xy} - \alpha_{12}N_xM_y + N_yM_x \] **__Uniaxial Constitutive Law__** \\ **For NPO = 0** ^Line 1 (2G10.0)^^ |SY11|Initial yield stress of tension or compression in 1 – direction.| |ET11|The tangent modulus in this direction| ^Line 2 (2G10.0)^^ |SY22|Initial yield stress in tension or compression in 2 – direction| |ET22|The tangent modulus in this direction| ^Line 3 (2G10.0)^^ |SY33|Initial yield stress in tension or compression in 3 – direction| |ET33|The tangent modulus in this direction| ^Line 4 (2G10.0)^^ |SY12|Initial yield shear stress in 1 - 2 plan| |ET12|The tangent modulus in this plan| REMARK: \\ It is possible to use the linear anisotropic or nonlinear isotropic hardening law for the model. For linear anisotropic hardening, it is only valuable for the case: NPO = 0 \\ **For NPO > 0**\\ ^Line 1 (4G10.0)^^ |SY11| |SY22| |SY33| |SY12| ^Line 2 - repeated N times (2G10.0)^^ |$\sigma_i$|the value of stree for the referent directional considered point| |$\varepsilon_i$|the value of strain for this direction at the considered point| ===== Results ===== ==== Stresses ==== |SIG(1)|$N_x$, normal effort in the local X‑direction| |SIG(2)|$N_y$, normal effort in the local Y‑direction| |SIG(3)|$N_{xy}$, normal effort in the local X-Y plan| |SIG(4)|$M_x$, moment associated to the local X‑direction| |SIG(5)|$M_y$, moment associated to the local Y‑direction| |SIG(6)|$M_{xy}$, moment associated to the local X-Y plan| ==== State variables ==== |Q(1)|thick, the actual thickness for this IP.| |Q(2)|$\sigma_n^e$, the equivalent VM type stress of the membrane part for this IP.| |Q(3)|$\sigma_m^e$, the equivalent VM type stress of the flexion part for this IP.| |Q(4)|$\varepsilon_{ep}^p$, equivalent plastic strain at this IP.| |Q(5)|$\sigma_y$, the current yield stress for this IP.| |Q(6)|$\alpha_{11}$, the anisotropic parameter for this IP.| |Q(7)|$\alpha_{12}$, idem.| |Q(8)|$\alpha_{22}$, idem.| |Q(9)|$\alpha_{33}$, idem.|