User Tools

Site Tools


laws:licha

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:licha [2019/06/25 15:47]
helene [Case 1: 2-D state (LICHA or SUCHA)]
laws:licha [2021/07/28 16:44] (current)
helene [The model]
Line 5: Line 5:
  
 ==== The model ==== ==== The model ====
-Definition of a uniformly distributed load (whether normal or tangent, whether in global axis) on a line (LICHA element) or on a surface (SUCHA element).+Definition of a uniformly distributed load (whether normal or tangent, whether in global axis) on a line ([[elements:​licha|LICHA]] element) or on a surface ([[elements:​sucha|SUCHA]] element).
 ==== Files ==== ==== Files ====
-Write here the names of the main subroutines of the law (those called by loi2 for Lagamine)+Write here the names of the main subroutines of the law (those called by loi2 for Lagamine) ​\\
 Prepro: LLICHA.F \\ Prepro: LLICHA.F \\
 Lagamine: LICHAB.F/​SUCHAB.F (element subroutine) Lagamine: LICHAB.F/​SUCHAB.F (element subroutine)
Line 192: Line 192:
 The obtained value (positive) will be used to impose gravity forces in the –Y direction. The SUCHA element is used so of course in a 2D analysis. The obtained value (positive) will be used to impose gravity forces in the –Y direction. The SUCHA element is used so of course in a 2D analysis.
 ==== Case 2: 3-D state (SUCHA) ==== ==== Case 2: 3-D state (SUCHA) ====
 +The ξ and η directions correspond to the intrinsic coordinates of the SUCHA element. \\
 +Reminder: for SUCHA element, the positive axis of the tangential stresses is in the opposite direction of the axes ξ (positively oriented from IP (integration point) 1 to IP 2) and η (positively oriented from IP 1 to IP 3). The positive axis of the pressure is also in the opposite direction of the positive normal to the element (given by the corkscrew rule).
 +{{ :​elements:​sucha_1.png?​400 |}}
  
 +^Line 1 (I5)^^
 +|IVAL| = 0, 10 index telling if the function is constant (IVAL=0) or Z-dependent function, in local axis (IVAL=10)|
 +|:::|= 11, 12 or 13 index telling if the function is constant, in global axis (be careful, at least one component or the normal unit of the SUCHA element must be equal to zero): \\ 11 = SUCHA with normal unit is in YZ plane. \\ 12 = SUCHA with normal unit is in ZX plane. \\ 13 = SUCHA with normal unit is in XY plane.|
 +|:::|= 14: idem 11, 12, or 13, but no restriction on the orientation of the unit normal vector (more general approach).|
 +=== 2.1 If IVAL = 0 (constant function, load in local axis) ===
 +^Line 2 (9G10.0)^^
 +|PRESSF | normal pressure|
 +|TKSIF | tangent load in the ξ direction|
 +|TETAF | tangent load in the η direction|
 +|PRESSD | normal pressure|
 +|TKSID | tangent load in the ξ direction|
 +|TETAD | tangent load in the η direction|
 +|PRESSC | constant normal pressure|
 +|TIME1 | time of decreasing beginning|
 +|TIME2 | time of decreasing end|
 +These data are reference values for the distributed loads. \\
 +During the non-linear analysis PRESSF, TKSIF, TETAF will be multiplied by the load factor ALAMBF while PRESSD, TKSID, TETAD will be multiplied by the load factor ALAMBD. The constant normal pressure PRESSC will be also added. \\ 
 +  * If time < TIME1:
 +    * PRESS = PRESS
 +    * TKSI = TKSI
 +    * TETA = TETA
 +  * If TIME1 < time < TIME2:
 +    * PRESS = PRESS*(TIME2-time)/​(TIME2-TIME1)
 +    * TKSI = TKSI *(TIME2-time)/​(TIME2-TIME1)
 +    * TETA = TETA *(TIME2-time)/​(TIME2-TIME1)
 +  * If time > TIME2:
 +    * PRESS = 0
 +    * TKSI = 0
 +    * TETA = 0
 +
 +=== 2.2 If IVAL = 10 ===
 +^1 Blank line^^
 +^Line 3 (2G10.0)^^
 +|PRESSA | PRESS = (PRESSA + PRESSB*ZINI)* ALAMBF ​ |
 +|PRESSB | :::|
 +
 +
 +=== 2.3 If IVAL = 11, 12, 13 (constant function, load in global axis) ===
 +^Line 2 (6G10.0)^^
 +|SIGXF | (*Fmult) Total stress in X axis|
 +|SIGYF | (*Fmult) Total stress in Y axis|
 +|SIGZF | (*Fmult) Total stress in Z axis|
 +|SIGXD | (*Dmult) Total stress in X axis|
 +|SIGYD | (*Dmult) Total stress in Y axis|
 +|SIGZD | (*Dmult) Total stress in Z axis|
 +
 +=== 2.4 If IVAL = 14 (constant function, load in global axis) ===
 +^Line 2 (6G10.0)^^
 +|SIGXF | (*Fmult) Total stress in X axis|
 +|SIGYF | (*Fmult) Total stress in Y axis|
 +|SIGZF | (*Fmult) Total stress in Z axis|
 +|SIGXD | (*Dmult) Total stress in X axis|
 +|SIGYD | (*Dmult) Total stress in Y axis|
 +|SIGZD | (*Dmult) Total stress in Z axis|
 +^Line 3 (5G10.0)^^
 +|SIGXC | Constant total stress in X axis|
 +|SIGYC | Constant total stress in Y axis|
 +|SIGZC | Constant Total stress in Z axis|
 +|TIME1 | Time of decreasing beginning|
 +|TIME2 | Time of decreasing end|
 +
 +  * If time < TIME1:
 +    * SIGX = SIGX
 +    * SIGY = SIGY
 +    * SIGZ = SIGZ
 +  * If TIME1 < time < TIME2:
 +    * SIGX = SIGX *(TIME2-time)/​(TIME2-TIME1) ​
 +    * SIGY = SIGY *(TIME2-time)/​(TIME2-TIME1)
 +    * SIGZ = SIGZ *(TIME2-time)/​(TIME2-TIME1)
 +  * If time > TIME2:
 +    * SIGX = 0
 +    * SIGY = 0
 +    * SIGZ = 0
 ===== Stresses ===== ===== Stresses =====
 ==== Number of stresses ==== ==== Number of stresses ====
laws/licha.1561470434.txt.gz · Last modified: 2020/08/25 15:35 (external edit)