Elasto-viscoplastic constitutive law with thermal effects for solid elements at variable temperature
Coupled thermo-mechanical analysis of elasto-viscoplastic isotropic element undergoing large strains.
Prepro: LLEVT.F
Lagamine: LEVT2D.F,
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | NO |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 230 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing. |
Line 1 (3I5) | |
---|---|
NTEMP | number of temperature at which material data are given |
IALG | 0 if $\alpha$ is given 1 if $\int{\alpha dT}$ is given |
METK | 0 $\dot{\lambda}$ function $\hat{D}_{eq}$ and analytical compliance matrix 1 compliance matrix computed by perturbation |
if NTEMP $\neq$ 0
Line 1 (7G10.0) - Repeat NTEMP times | |
---|---|
T | temperature |
E | YOUNG's elastic modulus at temperature T |
ANU | POISSON's ratio at temperature T |
ALPHA | thermal expansion coefficient ($\alpha$) or $\int{\alpha dT}$ at temperature (see IALG) |
$A_{c}$ | parameter for $\sigma- \dot{\varepsilon}_{\theta}$ relation at temperature T |
$A_{m}$ | parameter for $\sigma- \dot{\varepsilon}_{\theta}$ relation at temperature T $\hat{\sigma}_{eq} = A_{c} \hat{D}_{eq}^{A_{m}}$ |
CTQ | Taylor-Qinney's coefficient (q) at temperature T if NTEMP = 0. |
if NTEMP = 0
Line 1 (5G10.0) | |
---|---|
$E_{0}$ | E = $E_{0}(1-exp(-B_{E}*T))$ |
$\nu_{0}$ | $\nu= \nu_{0}exp(B_{\nu}*T)$ |
$\alpha_{0}$ | $\alpha= \alpha_{0}exp(B_{\alpha}/T)$ |
$A_{c0}$ | $A_{c}= A_{c0}exp(B_{A_{c}}/T)$ |
$A_{m0}$ | $A_{m}= A_{m0}(1-exp(-B_{A_{m}}*T))$ |
Line 2 (5G10.0) | |
$B_{E}$ | To check before use (June 91 A-M.HABRAKEN) |
$B_{\nu}$ | |
$B_{\alpha}$ | |
$B_{A_{c}}$ | |
$B_{A_{m}}$ |
4 (for plane state)
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
SIG(1) | $\sigma_{XX}$ |
SIG(2) | $\sigma_{YY}$ |
SIG(3) | $\sigma_{XY}$ |
SIG(4) | $\sigma_{ZZ}$ |
7
Q(1) | circumferential strain rate $\dot{\varepsilon_\theta}$ in axisymmetric state 1 in plane strain state |
Q(2) | current yield limit in tension |
Q(3) | 0 if the current state is elastic 1 if the current state is elasto-plastic |
Q(4) | equivalent plastic strain $\overline{\varepsilon}^{p}$ |
Q(5) | plastic work per unit volume |
Q(6) | part of the dissipated power converted into heat |
Q(7) | initial temperature |