====== LEV-T ====== ===== Description ===== Elasto-viscoplastic constitutive law with thermal effects for solid elements at variable temperature ==== The model ==== Coupled thermo-mechanical analysis of elasto-viscoplastic isotropic element undergoing large strains. ==== Files ==== Prepro: LLEVT.F \\ Lagamine: LEVT2D.F, ===== Availability ===== |Plane stress state|NO | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| NO| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 230| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing.| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |NTEMP|number of temperature at which material data are given| |IALG|0 if $\alpha$ is given \\ 1 if $\int{\alpha dT}$ is given| |METK| 0 $\dot{\lambda}$ function $\hat{D}_{eq}$ and analytical compliance matrix \\ 1 compliance matrix computed by perturbation| ==== Real parameters ==== **if NTEMP $\neq$ 0** ^Line 1 (7G10.0) - Repeat NTEMP times^^ |T| temperature| |E|YOUNG's elastic modulus at temperature T| |ANU|POISSON's ratio at temperature T| |ALPHA|thermal expansion coefficient ($\alpha$) or $\int{\alpha dT}$ at temperature (see IALG)| |$A_{c}$| parameter for $\sigma- \dot{\varepsilon}_{\theta}$ relation at temperature T| |$A_{m}$| parameter for $\sigma- \dot{\varepsilon}_{\theta}$ relation at temperature T\\ $\hat{\sigma}_{eq} = A_{c} \hat{D}_{eq}^{A_{m}}$| |CTQ| Taylor-Qinney's coefficient (q) at temperature T if NTEMP = 0.| **if NTEMP = 0** ^Line 1 (5G10.0)^^ |$E_{0}$|E = $E_{0}(1-exp(-B_{E}*T))$| |$\nu_{0}$|$\nu= \nu_{0}exp(B_{\nu}*T)$| |$\alpha_{0}$|$\alpha= \alpha_{0}exp(B_{\alpha}/T)$| |$A_{c0}$|$A_{c}= A_{c0}exp(B_{A_{c}}/T)$| |$A_{m0}$|$A_{m}= A_{m0}(1-exp(-B_{A_{m}}*T))$| ^Line 2 (5G10.0)^^ |$B_{E}$|To check before use (June 91 A-M.HABRAKEN) | |$B_{\nu}$|:::| |$B_{\alpha}$|:::| |$B_{A_{c}}$|:::| |$B_{A_{m}}$|:::| ===== Stresses ===== ==== Number of stresses ==== 4 (for plane state) ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{XY}$| |SIG(4)|$\sigma_{ZZ}$| ===== State variables ===== ==== Number of state variables ==== 7 ==== List of state variables ==== |Q(1)| circumferential strain rate $\dot{\varepsilon_\theta}$ in axisymmetric state \\ 1 in plane strain state| |Q(2)| current yield limit in tension| |Q(3)| 0 if the current state is elastic\\ 1 if the current state is elasto-plastic | |Q(4)| equivalent plastic strain $\overline{\varepsilon}^{p}$ | |Q(5)| plastic work per unit volume | |Q(6)| part of the dissipated power converted into heat | |Q(7)| initial temperature|