====== LEV-JET ====== ===== Description ===== An elasto‑viscoplastic constitutive law for solid elements at constant temperature ‑ Levi model. ==== The model ==== This law is used for mechanical analysis of elastoplastic isotropic element undergone large deformation. ==== Files ==== Prepro: LJETV.F \\ Lagamine: JETLEV.F, JT3LEV.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 57 for JET2D; 59 for JET3D | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^Line 1 (2I5)^^ |MLAW|= the method used to calculate the increments of stress| |:::|= 0 → Radial Return method| |:::|= 1 → Implicit integration method| |:::|= 2 → Modified implicit integration method| |MANA| See explanation below| __If MLAW = 0__ |MANA|= 0 → The tangent matrix obtained by setting $\dot{\omega} = 0$ | |:::|= 1 → The tangent matrix obtained by setting $\dot{\sigma}_{eq} = \dot{\sigma}_{eq}^{Trial}$ | |:::|= 2 → The tangent matrix obtained by setting $\dot{\sigma}_{eq} => \dot{\varepsilon}_{eq}$ | __Else__ |MANA|= 0 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} = 0$ | |:::|= 1 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} => \dot{\sigma}_{eq}$ | |:::|= 2 → The tangent matrix obtained by setting $\dot{\lambda}_{vp} => \dot{\varepsilon}_{eq}$ | ==== Real parameters ==== ^ Line 1 (4G10.0) ^^ |E|YOUNG's elastic modulus | |<| POISSON's ratio. | |$A_c$| parameter for $\sigma - \dot{\varepsilon}$ relation | |$A_m$| parameter for $\sigma - \dot{\varepsilon}$ relation | \[ \hat{\sigma}_{eq} = A_c \hat{D}_{eq}^{A_m} \] ===== Stresses ===== ==== Number of stresses ==== = 4 : for 2D analysis\\ = 6 : for 3D analysis ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y) coordinates. \\ For the 2D analysis : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| For 3D analysis : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| ===== State variables ===== ==== Number of state variables ==== = 24 for 2D analysis\\ = 15 for 3D analysis ==== List of state variables ==== __For 2D analysis:__ |Q(1)|current yield limit in tension; its initial value is $R_e$ | |Q(2)|equivalent plastic strain $(\bar{\varepsilon}^p)$ | |Q(3)| equivalent VM type stress in this element. | |Q(4)| $\sigma_{xx}$ in local axes of the element | |Q(5)| $\sigma_{yy}$ in local axes of the element | |Q(6)| $\sigma_{zz}$ in local axes of the element | |Q(7)| $\sigma_{xy}$ in local axes of the element| |Q(8)| $\sigma_{1}$ anti‑hourglass stress | |Q(9)| $\sigma_{2}$ anti‑hourglass stress | |Q(10to13)| x nodal coordinates in local axes of the element | |Q(14to17)| y nodal coordinates in local axes of the element | |Q(18)| = 0 in plane strain state | |:::| = average radius (X coordinate) of the element in axisymmetric state | |Q(19)|area of the element in the XY plane | |Q(20)|area of the no deformed element | |Q(21)|X(4) ‑ X(2) in initial structure | |Q(22)|X(3) ‑ X(1) in initial structure | |Q(23)|Y(4) ‑ Y(2) in initial structure | |Q(24)|Y(3) ‑ Y(1) in initial structure | |Q(25)| = 0 - if the current stress state is elastic| |:::| = 1 - if the current stress state is plastic.| __For 3D analysis:__ |Q(1)| current yield limit tension | |Q(2)| equivalent plastic strain $(\bar{\varepsilon}^p)$ | |Q(3)| equivalent VM type stress for this element. | |Q(4)| $\sigma_{11}$ anti‑hourglass stress | |Q(5)| $\sigma_{12}$ anti‑hourglass stress | |Q(6)| $\sigma_{13}$ anti‑hourglass stress | |Q(7)| $\sigma_{21}$ anti‑hourglass stress| |Q(8)| $\sigma_{22}$ anti‑hourglass stress | |Q(9)| $\sigma_{23}$ anti‑hourglass stress | |Q(10)| $\sigma_{31}$ anti‑hourglass stress | |Q(11)| $\sigma_{32}$ anti‑hourglass stress | |Q(12)| $\sigma_{33}$ anti‑hourglass stress | |Q(13)| $\sigma_{41}$ anti‑hourglass stress | |Q(14)| $\sigma_{42}$ anti‑hourglass stress | |Q(15)| $\sigma_{43}$ anti‑hourglass stress |