====== INTME2/INTME3 ====== ===== Description ===== Constitutive law for mechanical contact for interface elements ([[elements:fail2|FAIL2B]]/[[elements:fain2|FAIN2B]]/[[elements:faif2|FAIF2B]] or [[elements:fail3|FAIL3B]]/[[elements:fain3|FAIN3B]]/[[elements:faif3|FAIF3B]]). ==== The model ==== This law is similar to the Coulomb's Law in 2D/3D and is used in mechanical analysis of problems involving unilateral contact between two bodies. Coulomb dry friction law is used. The contact condition is enforced via a penalty method or augmented Lagrangian method according to ISTRA(4). \\ The fault behaviour can be expressed according to two formulations: * **Classical formulation** (IFRAC = 0) : \[\Delta \sigma = K_p\;\Delta V\] * **Goodman formulation** (IFRAC = 1) : \[\Delta\sigma = \frac{K_p}{\left(1+\frac{V}{D_0}\right)^{\gamma}}\Delta V \leftrightarrow V = D_0\left[\sqrt[1-\gamma]{\left(\frac{(1-\gamma)}{D_0\;K_n}\sigma'+1\right)}-1\right] \quad\text{and}\quad d-V=D_0\] Thus: * if contact pressure $\sigma'=0$ : Hydraulic aperture = $d = D_0$ and Fault closure = $V=0$ * if contact pressure $\sigma'=-\infty$ : Hydraulic aperture = $d = 0$ and Fault closure = $V = -D_0$ (negative value) {{: laws:intme.png?700| }} ==== Files ==== Prepro: LINTME.F \\ Lagamine: INTME2.F, INTME3.F ===== Availability ===== |Plane stress state| YES| |Plane strain state| YES| |Axisymmetric state| YES| |3D state| YES| |Generalized plane state| YES| ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 86| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (6I5) ^^ |ISOL| = 0 : use of total stresses in the constitutive law | |:::| $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:a8|Appendix 8]] | |IFRAC| = 0 : Classical formulation of fault behaviour | |:::| = 1 : Goodman formulation of fault behaviour | |NINTV| Only in 3D : number of sub-steps used to integrate numerically the constitutive equation in a time step (useful only in dynamic) | |INDIC| Only in 3D : 0 or 1 to define the outside pressure used in case of no contact (see "Use" paragraph) | |IREDUC| = 1 : Phi-C reduction method | |:::| = 0 : nothing | |ITYPEL| = 0 : for DAIL3 element (Nsig_meca = 6) | |:::| $\neq$ 0 : for [[elements:fain3|FAIN3]] or [[elements:faif3|FAIF3]] element (Nsig_meca = 4) | ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |AKP| Penalty coefficient on the contact pressure $K_p$ | |AKTAU| Penalty coefficient on the shear frictional stress $K_{\tau}$Â | |PHI| Coulomb's friction coefficient $\tan\phi$ | |B| Cohesion | |TAUMAX| Maximum contact friction (only for 2D state) (default value = $10^{20}$) | |PRESID| Residual pressure | ^ Line 2 (3G10.0) ^^ |GAMMA| Exponent value of Goodman formulation (useful if IFRAC = 1 ) | |D0| Maximal fault closure in absolute value for $\sigma'=-\infty$ (useful if IFRAC = 1) | |RHO| Specific mass (useful if element is FAIF2 and IENTH = 1 in INTFL2 law) | ===== Stresses ===== ==== Number of stresses ==== 4 for both the 2-D and 3-D states \\ ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 2-D state: |SIG(1)| normal contact pressure (> 0 if contact and < 0 if no contact) | |SIG(2)| tangent contact stress | |SIG(3)| meaningless | |SIG(4)| meaningless | For the 3-D state: |SIG(1)| normal contact pressure | |SIG(2)| tangent contact stress in the $\xi$ direction | |SIG(3)| tangent contact stress in the $\eta$ direction | |SIG(4)| reduced deviatoric stress = $\frac{||\tau||}{p'}$ if $p' > 0$ | The $\xi$ and $\eta$ correspond to the intrinsic co-ordinates of the contact element FAIL3.\\ ===== State variables ===== ==== Number of state variables ==== 4 (+6 for 2D state, +4 for [[elements:fail3|FAIL3]], +2 for [[elements:fain3|FAIN3]]/[[elements:faif3|FAIF3B]]) \\ These are the 4 state variables related to the law, they are the first ones printed. After them, you find the state variables related to the contact geometry, 6 for the [[elements:fail2|FAIL2B]]/[[elements:fain2|FAIN2B]]/[[elements:faif2|FAIF2B]], 4 for the [[elements:fail3|FAIL3B]] and 2 for [[elements:fain3|FAIN3B]]/[[elements:faif3|FAIF3B]] their meaning are explained in the element section. ==== List of state variables ==== |Q(1)| = 0 if the current state is elastic (no sliding) | |:::| = 1 if the current state is elastoplastic (sliding at contact) | |:::| = -1 if no mechanical, nor thermal contact | |Q(2)| amount of mechanical energy dissipated per unit area, due to friction | |Q(3)| Fault closure (V : < 0 for closed fracture, > 0 for opened fracture) (useful if IFRAC = 1) | |Q(4)| Hydraulic aperture $d$ (>0) (useful if IFRAC = 1) | For [[elements:fail2|FAIL2B]]/[[elements:fain2|FAIN2B]]/[[elements:faif2|FAIF2B]] element : |Q(5)| Number of foundation segment | |Q(6)| Relative interpenetration distance $\Delta V = V-V_{ini}$ (<0 for compression cases and >0 for extension cases) | |Q(7)| Jacobian | |Q(8)| NOCO contact indicator given by CALFON subroutine | |Q(9)| Relative tangential speed | |Q(10)| Relative sliding | For [[elements:fail3|FAIL3]] element : |Q(5)| Number of foundation segment | |Q(6)| Interpenetration distance $\lambda_c=\Delta V$ | |Q(7)| Relative tangential speed n°1 | |Q(8)| Relative tangential speed n°2 | For [[elements:fain3|FAIN3]] element : |Q(5)| Number of foundation segment | |Q(6)| Interpenetration distance $\lambda_c=\Delta V$ |