Table of Contents

INTFL2/INTFL3

Description

Constitutive law of longitudinal and transversal flows (water, gas and thermal) in porous media for an interface element 2D (FAIF2B) or 3D (FAIF3B).

Implemented by: J.P. Radu, 2007-2008

The model

This law is used for non-linear analysis of longitudinal seepage (water, gas and thermal) in porous media interface element.

The case of free surface seepage is also treated.

Transversal fluid (water, gas and thermal) transfer between the bodies depends upon the contact state:

  1. Contact occurs (pression non zero) fluid transfer (w, g and T) is computed according the transverse transmissivity $T_{t_c}$.
  2. Contact does not occur, fluid transfer (w, g, and T) is computed by convection with transverse transmissivity $T_{t_{nc}}$. In this case, the outside water pressure, gas pressure and temperature are the following one:
    • INDIC = 1: always the atmosphere water pressure, gas pressure and temperature
    • INDIC = 0 if the normal to the structure intersects one segment, this segment water pressure, gas pressure and temperature are chosen; otherwise, the atmosphere water pressure, gas pressure and temperature are used
    • INDIC = 2 if the normal to the structure intersects one segment, this segment water pressure, gas pressure and temperature are chosen; otherwise, no water, gas and thermal fluxes are computed (interest if 2 layers of contact element exist)

Files

Prepro: LINTFL.F
Lagamine: INTFL2.F, INTFL3.F

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 119 (Rem: = 120 in LOI2 for 3D state)
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (15I5)
IKW Formulation index for $k_w$
IKA Formulation index for $k_a$ 
ISRW Formulation index for $S_w$
ITHERM Formulation index for $\Gamma_T$
IVAP = 0 if no vapour diffusion in the problem
= 1 else
IFORM= 1: tangent formulation 
\[ \left\{\begin{array}f_{we}=\dot{M}_w=\left(\dot{\varepsilon}_v.S_w+n.S_w.\frac{\dot{\rho}_w}{\xi_w}+n.\dot{S}_w\right)\rho_w \\ f_{ae}=\dot{M}_a=\left(\dot{\varepsilon}_v.S_a+n.S_a.\frac{\dot{\rho}_a}{p_a}+n.\dot{S}_a\right)\rho_a\end{array}\right. \]
= 0 : secant formulation
\[ \left\{\begin{array}f_{we}=\dot{M}_w=\frac{n^BS_w^B\rho_w^B-n^AS_w^A\rho_w^A}{\Delta t} \\ f_{ae}=\dot{M}_a=\frac{n^BS_a^B\rho_a^B-n^AS_a^A\rho_a^A}{\Delta t} \end{array}\right.\]
ICONV= 0 if no convective term in the heat transport problem
= 1 else
ITEMOIN = 0 if analytic matrix (can be used only if IVAP = 0 $\rightarrow$ if no vapour diffusion in the problem)
= 1 if semi-analytic matrix (can be used in all the problems)
IKRN = 1 if Kozeni-Karmann formulation
IGAS = 0 if gas is air
= 1 if gas is hydrogen
= 2 if gas is nitrogen
IENTH = 0 if we define $\rho$ and $C_p$ for each constituent
\[\left\{\begin{array}{l} H_w = n.S_{r,w}.\rho_w.c_{p,w}.(T-T_0) \\ H_v = n.(1-S_{r,w}).\rho_v.c_{p,v}.(T-T_0) \\ H_a = n.(1-S_{r,w}).\rho_a.c_{p,a}.(T-T_0) \\ H_{a-d}=n.S_{r,w}.H.\rho_a.c_{p,a}.(T-T_0) \\ H_s = (1-n).\rho_s.c_{pas}.(T-T_0) \end{array}\right.\]
= 1 if we define $\rho.C_p$ equivalent for the medium \[H_m=\rho.C_p.(T-T_0) \]
INDIC= 0, 1, 2 to define the outside pressures/temperature used in case of no contact (see The model)
IKE = index of the longitudinal intrinsic permeability formulation
= 0 : $k_l=k_{l0}$
= 1 : $k_l=f(d)=k_{l0}.\dfrac{(d_0+d)^{exp}}{12}$
ITW Formulation index for relative transversal transmissivity $t_w$ 
ITA Formulation index for relative transversal transmissivity $t_a$

Real parameters

Line 1 (1G10.0)
PERMEA Fault longitudinal intrinsic permeability (=$k_{l0}$)
Line 2 (5G10.0)
POROS Soil porosity (=$n$)
TORTU Soil tortuosity (=$\tau$)
T0 Definition temperature (=$T_0$) [°K] 
PW0 Definition liquid pression (=$p_{w,0}$) [Pa]
PA0 Definition gaz pression (=$p_{a,0}$) [Pa] 
Line 3 (7G10.0)
VISCW0 Liquid dynamic viscosity (=$\mu_{w,0}$)  [Pa.s]
ALPHW0 Liquid dynamic viscosity thermal coefficient (=$\alpha^T_w$) [°K$^{-1}$]
RHOW0 Liquid density (=$\rho_{w,0}$) [kg.m$^{-3}$]
UXHIW0 Liquid compressibility coefficient (=$1/\xi_w$) [Pa$^{-1}$] 
BETAW0 Liquid thermal expansion coefficient (=$\beta^T_w$) [°K$^{-1}$] 
CONW0 Liquid thermal conductivity (=$\Gamma_{w,0}$) [W.m$^{-1}$.°K$^{-1}$]
GAMW0 Liquid thermal conductivity coefficient (=$\gamma^T_w$) [°K$^{-1}$]
Line 4 (3G10.0)
CPW0 Liquid specific heat (=$c_{p,wo}$)  [J.kg$^{-1}$.°K$^{-1}$] 
HEATW0 Liquid specific heat coefficient (=$H_w^T$) [°K$^{-1}$]
EMMAG Storage coefficient (=$E_s$) [Pa$^{-1}$]
Line 5 (7G10.0)
VISCA0 Gaz dynamic viscosity (=$\mu_{a,0}$)  [Pa.s]
ALPHW0 Gaz dynamic viscosity thermal coefficient (=$\alpha^T_a$) [°K$^{-1}$] 
RHOA0 Gaz density (=$\rho_{a,0}$)  [kg.m$^{-3}$]
CONA0 Gaz thermal conductivity (=$\Gamma_{a,0}$) [W.m$^{-1}$.°K$^{-1}$]
GAMA0 Gaz thermal conductivity coefficient (=$\gamma^T_a$) [°K$^{-1}$] 
CPA0 Gaz specific heat (=$c_{p,a0}$)  [J.kg$^{-1}$.°K$^{-1}$] 
HEATA0 Gaz specific heat coefficient (=$H_a^T$) [°K$^{-1}$]
Line 6 (5G10.0)
BETAS0 Solid thermal expansion coefficient (=$\beta_s^T$) [°K$^{-1}$] 
CONS0 Solid thermal conduction (=$\Gamma_{s,0}$) [W.m$^{-1}$.°K$^{-1}$]
GAMS0 Solid conduction coefficient (=$\gamma^T_s$) [°K$^{-1}$]
CPS0 Solid specific heat (=$c_{p,so}$) [J.kg$^{-1}$.°K$^{-1}$]
HEATS0 Solid specific heat coefficient (=$H_s^T$) [°K$^{-1}$]
Line 7 (3G10.0)
CKW1 1st coefficient of the function $k_{rw}$
CKW2 2nd coefficient of the function $k_{rw}$
CKW3 3rd coefficient of the function $k_{rw}$
Line 8 (2G10.0)
CKA1 1st coefficient of the function $k_{ra}$
CKA2 2nd coefficient of the function $k_{ra}$
Line 9 (7G10.0)
CSR1 1st coefficient of the function $S_w$
CSR2 2nd coefficient of the function $S_w$
CSR3 3rd coefficient of the function $S_w$
CSR4 4th coefficient of the function $S_w$
SRES Residual saturation degree (=$S_{res}$)
SRFIELD Field saturation degree (=$S_{r,field}$)
AIREV Air entry value [Pa]
Line 10 (5G10.0)
CLT1 1st coefficient of the function $\Gamma_T$
CLT2 2nd coefficient of the function $\Gamma_T$
CLT3 3rd coefficient of the function $\Gamma_T$
CLT4 4th coefficient of the function $\Gamma_T$
RHOC Coefficient for enthalpy $\rho.C_p$ (if IENTH = 1)
Line 11 (4G10.0)
KRMIN Minimum value of $k_r$
HENRY Henry coefficient
EXPM m Exponent of Kozeni-Karmann formulation
EXPN n Exponent of Kozeni-Karmann formulation
Line 12 (2G10.0)
D0 Maximal fault closure in absolute value (correspond to D0 from INTME2 mechanical law) for formulation (IKE=1)
EXP Exponent (=$exp$) = 2 for cubic law
EPAIS Fault thickness (useful only if no Goodman's formulation in mechanical law)
Line 13 (3G10.0)
THCONW Fault water intrinsic transverse transmissivity ($T_{t,c}$) when contact occurs 
CONVECW Fault water intrinsic transverse transmissivity ($T_{t,nc}$) when contact does not occur
PWAMB Atmosphere water pressure
Line 14 (3G10.0)
THCONG Fault gas intrinsic transverse transmissivity ($T_{t,c}$) when contact occurs 
CONVECG Fault gas intrinsic transverse transmissivity ($T_{t,nc}$) when contact does not occur 
PGAMB Atmosphere gas pressure 
Line 15 (3G10.0)
THCONT Fault thermal transverse transmissivity ($T_{t,c}$) when contact occurs 
CONVECT Fault thermal transverse transmissivitty ($T_{t,nc}$) when contact does not occur
TAMB Atmosphere temperature 
Line 16 (3G10.0)
CTW1 1st coefficient of the relative transversal transmissivity function $t_{rw}$
CTW2 2nd coefficient of the relative transversal transmissivity function $t_{rw}$
CTW3 3rd coefficient of the relative transversal transmissivity function $t_{rw}$
Line 17 (2G10.0)
CTA1 1st coefficient of the relative transversal transmissivity function $t_{ra}$
CTA2 2nd coefficient of the relative transversal transmissivity function $t_{ra}$

The longitudinal permeability $k$ is an intrinsic permeability ([$L^2$]) where $K_l$ is the permeability coefficient [$LT^{-1}$]. \[k_{l,intrinsic}=K_l\frac{\mu_f}{\rho_f g}\]\[[L^2]=[LT^{-1}]\frac{[ML^{-1}T^{-1}]}{[ML^{-3}][LT^{-2}]}\]

Following empirical formulations for describing the evolution of the relative permeability, the thermal conductivity and saturation with the suction are possible : see Appendix 8.

For any suction lower than air entry value (AIREV), the saturation is equal to SRFIELD value.

The longitudinal permeability of the fault is computed according to IKE value :

  1. IKE = 0 : $k_{long}$ = PERMEA
  2. IKE = 1 : $k_{long}$ = $(D_0+V)^{EXP}$ = $d^{EXP}$ where $V$ is the fault closure computed by the mechanical law and $d = D_0+V$ represents the actual fault opening. In this case, the INTME2 mechanical parameters ($D_0$, $\gamma$, $K_n$ and $\sigma’$) are linked with the hydraulic parameter $k_{long}$ : \[V=D_0\left[\sqrt{1-\gamma}{\left(\frac{(1-\gamma)}{D_0.K_n}.\sigma'+1\right)}-1\right]\]\[d=\sqrt{12.k_{long}}\]\[d-V=d_0\] The knowledge of four parameters is sufficient to determine the fifth parameter.

Stresses

Number of stresses

20 for 3D state
16 for the other cases

Meaning

In 2D state :

SIG(1) Longitudinal water flow in the interface element
SIG(2) Stored water flow
SIG(3) 1st transversal water flow in the interface element
SIG(4) 2nd transversal water flow in the interface element
SIG(5) Longitudinal gas flow in the interface element
SIG(6) Stored gas flow
SIG(7) 1st transversal gas flow in the interface element
SIG(8) 2nd transversal gas flow in the interface element
SIG(9) Longitudinal thermal flow in the interface element
SIG(10) Stored thermal flow
SIG(11) 1st transversal thermal flow in the interface element
SIG(12) 2nd transversal thermal flow in the interface element
SIG(13) Longitudinal vapour flow in the interface element
SIG(14) Stored vapour flow
SIG(15) 1st transversal vapour flow in the interface element
SIG(16) 2nd transversal vapour flow in the interface element

In 3D state:

SIG(1) Mass water flow in the x local direction of the interface element
SIG2) Mass water flow in the y local direction of the interface element
SIG(3) Stored water flow
SIG(4) 1st transversal water flow in the interface element
SIG(5) 2nd transversal water flow in the interface element
SIG(6) Mass gas flow in the x local direction of the interface element
SIG(7) Mass gas flow in the y local direction of the interface element
SIG(8) Stored gas flow
SIG(9) 1st transversal gas flow in the interface element
SIG(10) 2nd transversal gas flow in the interface element
SIG(11) Thermal flow in the x local direction of the interface element
SIG(12) Thermal flow in the y local direction of the interface element
SIG(13) Stored thermal flow
SIG(14) 1st transversal thermal flow in the interface element
SIG(15) 2nd transversal thermal flow in the interface element
SIG(16) Mass vapour flow in the x local direction of the interface element
SIG(17) Mass vapour flow in the y local direction of the interface element
SIG(18) Stored vapour flow
SIG(19) 1st transversal vapour flow in the interface element
SIG(20) 2nd transversal vapour flow in the interface element

State variables

Number of state variables

25

List of state variables

Q(1) Water relative permeability (=$k_{rw}$) 
Q(2) Air relative permeability (=$k_{ra})$ 
Q(3) Soil porosity (=$n$)
Q(4) Soil saturation degree (=$S_w$) 
Q(5) Suction (=$p_c$=$p_a-p_w$) 
Q(6) Water specific mass (=$\rho_w$)
Q(7) Air specific mass (=$\rho_a$)
Q(8) “Pe number” = convective effect / conductive effect
\[=\frac{\rho_f.c_f.T.\underline{q}}{\Gamma_{av}.\underline{grad}(T)}\]
Q(9) Water content (=$w$) 
Q(10)Vapour specific mass (=$\rho_v$)
Q(11)Vapour pressure (=$p_v$)
Q(12)Relative humidity (=$H_r$)
Q(13)Liquid water mass per unit soil volume
Q(14)Dry air mass per unit soil volume
Q(15)Vapour mass per unit soil volume
Q(16)Longitudinal intrinsic permeability (=$k_{long}$)
Q(17)Gas soil saturation degree (=$S_g$)
Q(18)none
Q(19)Water pressure inside the fault
Q(20)Gas pressure (if IVAP=0) or $\alpha$ (H2, N2 …) partial pressure ($p_{\alpha}^g=p^g-p_{H_2O}^g$ = gas pressure–vapour pressure (if IVAP=1)) inside the fault
Q(21)Temperature inside the fault
Q(22)Water transverse transmissivity ($T_{t,c}$ or $T_{t,nc}$), multiplied by $t_{rw}$
Q(23)Gas transverse transmissivity ($T_{t,c}$ or $T_{t,nc}$), multiplied by $t_{ra}$
Q(24)Thermal transverse transmissivity ($T_{t,c}$ or $T_{t,nc}$) 
Q(25)Thermal longitudinal conductivity