User Tools

Site Tools


laws:hypofe2

This is an old revision of the document!


HYPOFE2

Description

Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC.

Can be parallelized with ELEMB (macroscale) or at the perturbation loop (microscale).

Takes into account the hysteresis in the water retention law when used with FKRSAT. Can also be used with osmotic suction (under development).

The model

This law is only used for water seepage - air seepage- pollutant diffusion and advection (coupled with water or gas flows) for non linear analysis in 2D porous media.

Mass conservation of water (liquid and vapour)

\[ \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w . \vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v . \vec{q_g})}_{\text{Vapeur}} = 0 \]

Liquid and vapour flows

Starting from Darcy's law, the liquid water velocity is: \[ \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \; \rho_w \; \vec{grad}(y) \right]\ \text{where}\ k_w = K_w\; \frac{\mu_w}{\rho_w\; g}\left[ m^2\right] \]

The water vapour only flows in unsaturated pores and depends on the tortuosity of the path: \[ \vec{i}_v = - n \; S_{r,g} \; \tau D\; \rho_s \; \vec{grad} \omega_v \] Where $\omega_v = \rho_v/\rho_g$ is the dry air mass content in the gaseous mix.

Liquid State Equations

  1. Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]
  2. Intrinsic Permeability $k_w$:
    Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
  3. Saturation degree $S_w$:
    Depending on suction $s = p_g - p_w : S_w = f(s)$

Saturation degree equation (with FKRSAT)

ISR = 53 Van Genuchten model (ISR=5) with hysteresis implemented.

The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model: \[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] \[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]

The hysteresis is then defined by: \[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/m_w}-1\right)^{1/n_w}\] \[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/m_d}-1\right)^{1/n_d}\]

And therefore: \[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\]

The ISR=53 parameters are: CSRW1=$a_d$, CSRW2=$n_d$, CSRW3=$a_w$, CSRW4=$n_w$ and CSRW5=$b$

Osmotic suction model

TO BE COMPLETED.

Mass conservation of dry air

\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]

Dry air and dissolved gas flows

Starting from Darcy's law, the gas velocity is: \[ \vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y) \right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right] \]

The diffusion velocity of dry air is proportional to a density gradient. Using the diffusion theory adapted to porous medium, one writes: \[ \vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} \omega_a = -\vec{I}_v \] Where $\omega_a = \rho_a/\rho_g$ is the dry air mass content inside the gas mix.

Gas State Equation

  1. Density $\rho_a$ :
    Hypothesis : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}} \]
  2. Intrinsic Permeability $k_g$:
    Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$
  3. Saturation degree $S_g$:
    Depending on suction $s = p_g - p_w : S_g = f(s) = 1 - S_w$

Balance Equation of Pollutant

\[\frac{\partial}{\partial x_i} (v_i^p) = 0\]

Pollutant flows

\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^{w/g} - D \frac{\partial C_m}{\partial x_i} \]
With $C_M$ and $C_m$ [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^{w/g}$ is the water or gas velocity obtained from Darcy's law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.

Files

Prepro: LHYPOFE2.F
Lagamine: HYPOFE2.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 629
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (3I10,2G10.0)
NLAWFEM2Number of constitutive laws at the subscale
KFLUNumber of DOF at the microscale: 1 = $P_w$, 2 = $P_w+C$, 3 = $P_w+P_g$, 4 = $P_w+C+P_g$ with $C$ the concentration in pollutant
MITERMaximum number of iterations at the subscale
CNORMNorm for the solver of the subscale
FACONVUnits of conversion of the RVE (it has a size of 1*FACONV[-])

Real parameters

Line 1 (3E10.2,2G10.0)
VISCW0Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$
RHOW0Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$
UXHIWLiquid compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$
PW0Initial water pressure $\left[ Pa\right]$
T0Initial temperature $\left[ K\right]$
Line 2 (1G10.0)
CPINIInitial pollutant concentration $\left[ -\right]$
Line 3 (3E10.2,2G10.0)
VISCA0Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$
RHOA0Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$
PMGASGas molar mass $[g/mol]$
PG0Initial gas pressure $\left[ Pa\right]$
PHENRYHenry coefficient
Line 4 (4I10)
IVAP= 1 for vapour, = 0 if liquid water only
IGAS= 0 for air, =1 for $H_2$, =2 for $N_2$, = 3 for $Ar$, = 4 for $He$, = 5 for $CO_2$, = 6 for $CH_4$
IOSMOTIC= 0 to neglect osmotic suction, = 1 for osmotic suction with Van't Hoff model, = 2 for osmotic suction with Kelvin (water activity) and Pitzer model
IDIFF= 0 for the pollutant to diffuse through water, = 1 through gas
Line 5 (4I10)
ISRRetention curve (=53 for Van Genuchten with hysteresis)
IKWWater relative permeability curve (=7 for Van Genuchten)
IKAGas relative permeability curve (=6 for Van Genuchten)
N_SUBINCRNumber of additional multiplicator for the number of subincrement in the hysteresis model
Line 6 (3G10.0)
CKW1First parameter of IKW
CKW2Second paremeter of IKW
CKW3Third parameter of IKW
Line 7 (2G10.0)
CKA1First parameter of IKA
CKA2Second parameter of IKA
Line 8 (5G10.0)
CSR1First parameter of ISR
CSR2Second parameter of ISR
CSR3Third parameter of ISR
CSR4Fourth parameter of ISR
CSR5Fifth parameter of ISR
Line 9 (5G10.0)
SRESResidual saturation degree $(=S_{res})$
SRFIELDField saturation degree $(=S_{r, field})$
AIREVAir entry pressure $\left[Pa\right]$
AKRMINMinimum value of relative permeabikity
SRINIInitial saturation degree

Subscale parameters

To be repeated as many time as NLAWFEM2.

Line 1 (2I5)
ILAW2Number of the subscale constitutive law (=1:NLAWFEM2)
ITYPE2Type of subscale law (=1 for Hydraulic pollutant microscale law)
Line 2 (4G10.0)
POROSMaterial porosity ($=n$)
PERMINTMaterial intrinsic permeability ($=k_{int}$) $[m^2]$
DIFFCMaterial diffusion coefficient of the pollutant ($D_{app}$) $[m^2/s]$
TORTUMaterial tortuosity ($=\tau$)

Stresses

Number of stresses

28

Meaning

In 2D state :

SIG(1)$\sigma_x$ (unused)
SIG(2)$\sigma_y$ (unused)
SIG(3)$\sigma_{xy}$ (unused)
SIG(4)$\sigma_z$ (unused)
SIG(5)Homogenised liquid flow along $x$ $(=f_{wx})$
SIG(6)Homogenised liquid flow along $y$ $(=f_{wy})$
SIG(7)Homogenised liquid flow stored $(=f_{we})$
SIG(8)Homogenised mean flow of the pollutant along $x$ $(=(f_{px,a}+f_{px,b})/2)$
SIG(9)Homogenised mean flow of the pollutant along $y$ $(=(f_{py,a}+f_{py,b})/2)$
SIG(10)Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$
SIG(11)Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,b})$
SIG(12)Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,b})$
SIG(13)Homogenised gas flow along $x$ $(=f_{gx})$
SIG(14)Homogenised gas flow along $y$ $(=f_{gy})$
SIG(15)Homogenised gas flow stored $(=f_{ge})$
SIG(16)Advective flow of dissolved gas along $x$ (unused)
SIG(17)Advective flow of dissolved gas along $y$ (unused)
SIG(18)Vapour flow along $x$ $(=f_{vx})$
SIG(19)Vapour flow along $y$ $(=f_{vy})$
SIG(20)Vapour flow stored $(=f_{ve})$
SIG(21)Unused
SIG(22)Unused
SIG(23)Unused
SIG(24)Unused
SIG(25)Unused
SIG(26)Unused
SIG(27)Unused
SIG(28)Unused

State variables

Number of state variables

12 + 5*(Number of Subscale Nodes)
/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg

List of state variables

Q(1)Liquid water mass at the RVE
Q(2)Pollutant mass at the RVE
Q(3)Gaseous air mass at the RVE
Q(4)Homogenised macroscale porosity
Q(5)Water saturation degree
Q(6)Homogenised water relative permeability
Q(7)Homogenised gas relative permeability
Q(8)Homogenised macroscale tortuosity
Q(9)Vapour mass at the RVE
Q(10)Homogenised suction
Q(11)Homogenised Osmotic suction
Q(12 + (i-1)*5)$X_i$
Q(12 + (i-1)*5 +1)$Y_i$
Q(12 + (i-1)*5 +2)$P_{w,i}$
Q(12 + (i-1)*5 +3)$C_i$
Q(12 + (i-1)*5 +4)$P_{g,i}$
laws/hypofe2.1757507897.txt.gz · Last modified: 2025/09/10 14:38 by arthur