User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2025/09/10 14:26]
arthur [The model]
laws:hypofe2 [2025/09/10 14:39] (current)
arthur [Number of state variables]
Line 32: Line 32:
   - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;​\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]   - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;​\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]
   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
-  - Saturation degree $S_w$: \\ Depending on succion ​$s = p_g - p_w : S_w = f(s)$+  - Saturation degree $S_w$: \\ Depending on suction ​$s = p_g - p_w : S_w = f(s)$
  
 === Saturation degree equation (with FKRSAT) === === Saturation degree equation (with FKRSAT) ===
Line 73: Line 73:
   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]
   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$
-  - Saturation degree $S_g$: \\ Depending on succion ​$s = p_g - p_w : S_g = f(s) = 1 - S_w$+  - Saturation degree $S_g$: \\ Depending on suction ​$s = p_g - p_w : S_g = f(s) = 1 - S_w$
  
 === Balance Equation of Pollutant === === Balance Equation of Pollutant ===
Line 79: Line 79:
  
 === Pollutant flows === === Pollutant flows ===
-\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^w - D \frac{\partial C_m}{\partial x_i} \]\\ +\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^{w/g} - D \frac{\partial C_m}{\partial x_i} \]\\ 
-With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.+With $C_Mand $C_m[-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^{w/g}$ is the water or gas velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.
 ==== Files ==== ==== Files ====
 Prepro: LHYPOFE2.F \\ Prepro: LHYPOFE2.F \\
Line 99: Line 99:
 ^ Line 1 (3I10,​2G10.0) ^^ ^ Line 1 (3I10,​2G10.0) ^^
 |NLAWFEM2|Number of constitutive laws at the subscale| |NLAWFEM2|Number of constitutive laws at the subscale|
-|KFLU|Number of DOF: 1=Pw, 2=Pw+C, 3=Pw+Pg, 4=Pw+C+Pg with C the concentration in pollutant|+|KFLU|Number of DOF at the microscale: 1 = $P_w$, 2 = $P_w+C$, 3 = $P_w+P_g$, 4 = $P_w+C+P_g$ with $Cthe concentration in pollutant|
 |MITER|Maximum number of iterations at the subscale| |MITER|Maximum number of iterations at the subscale|
 |CNORM|Norm for the solver of the subscale| |CNORM|Norm for the solver of the subscale|
-|FACONV|Units of conversion of the RVE (it has a size of 1[-])|+|FACONV|Units of conversion of the RVE (it has a size of 1*FACONV[-])|
  
  
Line 119: Line 119:
 |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$|
 |PMGAS|Gas molar mass $[g/mol]$| |PMGAS|Gas molar mass $[g/mol]$|
-|PA0|Initial gas pressure $\left[ Pa\right]$|+|PG0|Initial gas pressure $\left[ Pa\right]$|
 |PHENRY|Henry coefficient| |PHENRY|Henry coefficient|
-^ Line 4 (1I10) ^^ +^ Line 4 (4I10) ^^ 
-|IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)| +|IVAP|= 1 for vapour, = 0 if liquid water only
-^ Line 5 (3I10) ^^+|IGAS|= 0 for air, =1 for $H_2$, =2 for $N_2$, = 3 for $Ar$, = 4 for $He$, = 5 for $CO_2$, = 6 for $CH_4$| 
 +|IOSMOTIC|= 0 to neglect osmotic suction, = 1 for osmotic suction with Van't Hoff model, = 2 for osmotic suction with Kelvin ​(water activityand Pitzer model| 
 +|IDIFF|= 0 for the pollutant to diffuse through water, = 1 through gas
 +^ Line 5 (4I10) ^^
 |ISR|Retention curve (=53 for Van Genuchten with hysteresis)| |ISR|Retention curve (=53 for Van Genuchten with hysteresis)|
 |IKW|Water relative permeability curve (=7 for Van Genuchten)| |IKW|Water relative permeability curve (=7 for Van Genuchten)|
 |IKA|Gas relative permeability curve (=6 for Van Genuchten)| |IKA|Gas relative permeability curve (=6 for Van Genuchten)|
 +|N_SUBINCR|Number of additional multiplicator for the number of subincrement in the hysteresis model|
 ^ Line 6 (3G10.0)^^ ^ Line 6 (3G10.0)^^
 |CKW1|First parameter of IKW| |CKW1|First parameter of IKW|
Line 180: Line 184:
 |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| |SIG(16)|Advective flow of dissolved gas along $x$ (unused)|
 |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| |SIG(17)|Advective flow of dissolved gas along $y$ (unused)|
-|SIG(18)|Unused+|SIG(18)|Vapour flow along $x$ $(=f_{vx})$
-|SIG(19)|Unused+|SIG(19)|Vapour flow along $y$ $(=f_{vy})$
-|SIG(20)|Unused|+|SIG(20)|Vapour flow stored $(=f_{ve})$|
 |SIG(21)|Unused| |SIG(21)|Unused|
 |SIG(22)|Unused| |SIG(22)|Unused|
Line 194: Line 198:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-10 + 5*(Number of Subscale Nodes)\\ +11 + 5*(Number of Subscale Nodes)\\ 
-/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg+/!\ The state variables vector also contains the following information for each subscale node: $X$$Y$$P_w$$C$$P_g$
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)|Liquid water mass at the RVE| |Q(1)|Liquid water mass at the RVE|
Line 205: Line 209:
 |Q(7)|Homogenised gas relative permeability| |Q(7)|Homogenised gas relative permeability|
 |Q(8)|Homogenised macroscale tortuosity| |Q(8)|Homogenised macroscale tortuosity|
-|Q(9)|Vapour mass at the RVE (unused)+|Q(9)|Vapour mass at the RVE| 
-|Q(10)|Homogenised ​succion+|Q(10)|Homogenised ​total suction $(= p_g - p_w + osmotic)$
-|Q(11 + (i-1)*5)|$X_i$| +|Q(11)|Homogenised osmotic suction $(= osmotic)$| 
-|Q(11 + (i-1)*5 +1)|$Y_i$| +|Q(12 + (i-1)*5)|$X_i$| 
-|Q(11 + (i-1)*5 +2)|$P_{w,​i}$| +|Q(12 + (i-1)*5 +1)|$Y_i$| 
-|Q(11 + (i-1)*5 +3)|$C_i$| +|Q(12 + (i-1)*5 +2)|$P_{w,​i}$| 
-|Q(11 + (i-1)*5 +4)|$P_{g,​i}$|+|Q(12 + (i-1)*5 +3)|$C_i$| 
 +|Q(12 + (i-1)*5 +4)|$P_{g,​i}$|
  
laws/hypofe2.1757507176.txt.gz · Last modified: 2025/09/10 14:26 by arthur