This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
laws:hypofe2 [2025/09/10 14:24] arthur [The model] |
laws:hypofe2 [2025/09/10 14:39] (current) arthur [Number of state variables] |
||
---|---|---|---|
Line 12: | Line 12: | ||
=== Mass conservation of water (liquid and vapour) === | === Mass conservation of water (liquid and vapour) === | ||
\[ | \[ | ||
- | \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v \vec{q_g})}_{Vapeur} = 0 | + | \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w . \vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v . \vec{q_g})}_{\text{Vapeur}} = 0 |
\] | \] | ||
Line 18: | Line 18: | ||
Starting from Darcy's law, the liquid water velocity is: | Starting from Darcy's law, the liquid water velocity is: | ||
\[ | \[ | ||
- | \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y) \right]\ \text{where}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right] | + | \vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \; \rho_w \; \vec{grad}(y) \right]\ \text{where}\ k_w = K_w\; \frac{\mu_w}{\rho_w\; g}\left[ m^2\right] |
\] | \] | ||
The water vapour only flows in unsaturated pores and depends on the tortuosity of the path: | The water vapour only flows in unsaturated pores and depends on the tortuosity of the path: | ||
\[ | \[ | ||
- | \vec{i}_v = - n S_{r,g} \tau D \rho_s \vec{grad} \omega_v | + | \vec{i}_v = - n \; S_{r,g} \; \tau D\; \rho_s \; \vec{grad} \omega_v |
\] | \] | ||
Where $\omega_v = \rho_v/\rho_g$ is the dry air mass content in the gaseous mix. | Where $\omega_v = \rho_v/\rho_g$ is the dry air mass content in the gaseous mix. | ||
Line 30: | Line 30: | ||
=== Liquid State Equations === | === Liquid State Equations === | ||
- | - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\] | + | - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\] |
- Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$ | - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$ | ||
- | - Saturation degree $S_w$: \\ Depending on succion $s = p_g - p_w : S_w = f(s)$ | + | - Saturation degree $S_w$: \\ Depending on suction $s = p_g - p_w : S_w = f(s)$ |
=== Saturation degree equation (with FKRSAT) === | === Saturation degree equation (with FKRSAT) === | ||
Line 73: | Line 73: | ||
- Density $\rho_a$ :\\ //Hypothesis// : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}} \] | - Density $\rho_a$ :\\ //Hypothesis// : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}} \] | ||
- Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$ | - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$ | ||
- | - Saturation degree $S_g$: \\ Depending on succion $s = p_g - p_w : S_g = f(s) = 1 - S_w$ | + | - Saturation degree $S_g$: \\ Depending on suction $s = p_g - p_w : S_g = f(s) = 1 - S_w$ |
=== Balance Equation of Pollutant === | === Balance Equation of Pollutant === | ||
Line 79: | Line 79: | ||
=== Pollutant flows === | === Pollutant flows === | ||
- | \[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^w - D \frac{\partial C_m}{\partial x_i} \]\\ | + | \[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^{w/g} - D \frac{\partial C_m}{\partial x_i} \]\\ |
- | With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy's law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient. | + | With $C_M$ and $C_m$ [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^{w/g}$ is the water or gas velocity obtained from Darcy's law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient. |
==== Files ==== | ==== Files ==== | ||
Prepro: LHYPOFE2.F \\ | Prepro: LHYPOFE2.F \\ | ||
Line 99: | Line 99: | ||
^ Line 1 (3I10,2G10.0) ^^ | ^ Line 1 (3I10,2G10.0) ^^ | ||
|NLAWFEM2|Number of constitutive laws at the subscale| | |NLAWFEM2|Number of constitutive laws at the subscale| | ||
- | |KFLU|Number of DOF: 1=Pw, 2=Pw+C, 3=Pw+Pg, 4=Pw+C+Pg with C the concentration in pollutant| | + | |KFLU|Number of DOF at the microscale: 1 = $P_w$, 2 = $P_w+C$, 3 = $P_w+P_g$, 4 = $P_w+C+P_g$ with $C$ the concentration in pollutant| |
|MITER|Maximum number of iterations at the subscale| | |MITER|Maximum number of iterations at the subscale| | ||
|CNORM|Norm for the solver of the subscale| | |CNORM|Norm for the solver of the subscale| | ||
- | |FACONV|Units of conversion of the RVE (it has a size of 1[-])| | + | |FACONV|Units of conversion of the RVE (it has a size of 1*FACONV[-])| |
Line 119: | Line 119: | ||
|RHOA0|Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$| | |RHOA0|Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$| | ||
|PMGAS|Gas molar mass $[g/mol]$| | |PMGAS|Gas molar mass $[g/mol]$| | ||
- | |PA0|Initial gas pressure $\left[ Pa\right]$| | + | |PG0|Initial gas pressure $\left[ Pa\right]$| |
|PHENRY|Henry coefficient| | |PHENRY|Henry coefficient| | ||
- | ^ Line 4 (1I10) ^^ | + | ^ Line 4 (4I10) ^^ |
- | |IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)| | + | |IVAP|= 1 for vapour, = 0 if liquid water only| |
- | ^ Line 5 (3I10) ^^ | + | |IGAS|= 0 for air, =1 for $H_2$, =2 for $N_2$, = 3 for $Ar$, = 4 for $He$, = 5 for $CO_2$, = 6 for $CH_4$| |
+ | |IOSMOTIC|= 0 to neglect osmotic suction, = 1 for osmotic suction with Van't Hoff model, = 2 for osmotic suction with Kelvin (water activity) and Pitzer model| | ||
+ | |IDIFF|= 0 for the pollutant to diffuse through water, = 1 through gas| | ||
+ | ^ Line 5 (4I10) ^^ | ||
|ISR|Retention curve (=53 for Van Genuchten with hysteresis)| | |ISR|Retention curve (=53 for Van Genuchten with hysteresis)| | ||
|IKW|Water relative permeability curve (=7 for Van Genuchten)| | |IKW|Water relative permeability curve (=7 for Van Genuchten)| | ||
|IKA|Gas relative permeability curve (=6 for Van Genuchten)| | |IKA|Gas relative permeability curve (=6 for Van Genuchten)| | ||
+ | |N_SUBINCR|Number of additional multiplicator for the number of subincrement in the hysteresis model| | ||
^ Line 6 (3G10.0)^^ | ^ Line 6 (3G10.0)^^ | ||
|CKW1|First parameter of IKW| | |CKW1|First parameter of IKW| | ||
Line 180: | Line 184: | ||
|SIG(16)|Advective flow of dissolved gas along $x$ (unused)| | |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| | ||
|SIG(17)|Advective flow of dissolved gas along $y$ (unused)| | |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| | ||
- | |SIG(18)|Unused| | + | |SIG(18)|Vapour flow along $x$ $(=f_{vx})$| |
- | |SIG(19)|Unused| | + | |SIG(19)|Vapour flow along $y$ $(=f_{vy})$| |
- | |SIG(20)|Unused| | + | |SIG(20)|Vapour flow stored $(=f_{ve})$| |
|SIG(21)|Unused| | |SIG(21)|Unused| | ||
|SIG(22)|Unused| | |SIG(22)|Unused| | ||
Line 194: | Line 198: | ||
===== State variables ===== | ===== State variables ===== | ||
==== Number of state variables ==== | ==== Number of state variables ==== | ||
- | 10 + 5*(Number of Subscale Nodes)\\ | + | 11 + 5*(Number of Subscale Nodes)\\ |
- | /!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg | + | /!\ The state variables vector also contains the following information for each subscale node: $X$, $Y$, $P_w$, $C$, $P_g$ |
==== List of state variables ==== | ==== List of state variables ==== | ||
|Q(1)|Liquid water mass at the RVE| | |Q(1)|Liquid water mass at the RVE| | ||
Line 205: | Line 209: | ||
|Q(7)|Homogenised gas relative permeability| | |Q(7)|Homogenised gas relative permeability| | ||
|Q(8)|Homogenised macroscale tortuosity| | |Q(8)|Homogenised macroscale tortuosity| | ||
- | |Q(9)|Vapour mass at the RVE (unused)| | + | |Q(9)|Vapour mass at the RVE| |
- | |Q(10)|Homogenised succion| | + | |Q(10)|Homogenised total suction $(= p_g - p_w + osmotic)$| |
- | |Q(11 + (i-1)*5)|$X_i$| | + | |Q(11)|Homogenised osmotic suction $(= osmotic)$| |
- | |Q(11 + (i-1)*5 +1)|$Y_i$| | + | |Q(12 + (i-1)*5)|$X_i$| |
- | |Q(11 + (i-1)*5 +2)|$P_{w,i}$| | + | |Q(12 + (i-1)*5 +1)|$Y_i$| |
- | |Q(11 + (i-1)*5 +3)|$C_i$| | + | |Q(12 + (i-1)*5 +2)|$P_{w,i}$| |
- | |Q(11 + (i-1)*5 +4)|$P_{g,i}$| | + | |Q(12 + (i-1)*5 +3)|$C_i$| |
+ | |Q(12 + (i-1)*5 +4)|$P_{g,i}$| | ||