User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2025/09/10 14:15]
arthur [The model]
laws:hypofe2 [2025/09/10 14:39] (current)
arthur [Number of state variables]
Line 10: Line 10:
 This law is only  used for water seepage - air seepage- pollutant diffusion and advection (coupled with water or gas flows) for non linear analysis in 2D porous media. This law is only  used for water seepage - air seepage- pollutant diffusion and advection (coupled with water or gas flows) for non linear analysis in 2D porous media.
  
-=== Mass conservation of liquid ​water ===+=== Mass conservation of water (liquid and vapour) ​===
 \[ \[
-\underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquide}} = 0+\underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w ​\vec{q_l})}_{\text{Liquide}} + \underbrace{\frac{\partial}{\partial t} (\rho_v . n . S_{r,g}) + div(\rho_v . \vec{q_g})}_{\text{Vapeur}} = 0
 \] \]
  
-=== Liquid ​flow ===+=== Liquid ​and vapour flows ===
 Starting from Darcy'​s law, the liquid water velocity is: Starting from Darcy'​s law, the liquid water velocity is:
 \[ \[
-\vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) \right]\ \text{where}\ k_w = K_w \frac{\mu_w}{\rho_w g}\left[ m^2\right]+\vec{q_l} = - \frac{k_w}{\mu_w}\left[ \vec{grad}(p_w) + g \; \rho_w \; \vec{grad}(y) \right]\ \text{where}\ k_w = K_w\; \frac{\mu_w}{\rho_w\; g}\left[ m^2\right]
 \] \]
 +
 +The water vapour only flows in unsaturated pores and depends on the tortuosity of the path:
 +\[
 +\vec{i}_v = - n \; S_{r,g} \; \tau D\;  \rho_s \; \vec{grad} \omega_v
 +\]
 +Where $\omega_v = \rho_v/​\rho_g$ is the dry air mass content in the gaseous mix.
 +
  
 === Liquid State Equations === === Liquid State Equations ===
  
-  - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]+  - Density: $\rho_w$: \[\rho_w (p_w) = \rho_{wo}\;\left[ 1+\frac{p_w-p_{w0}}{\chi_w}\right]\]
   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
-  - Saturation degree $S_w$: \\ Depending on succion ​$s = p_a - p_w : S_w = f(s)$+  - Saturation degree $S_w$: \\ Depending on suction ​$s = p_g - p_w : S_w = f(s)$
  
 === Saturation degree equation (with FKRSAT) === === Saturation degree equation (with FKRSAT) ===
Line 42: Line 49:
  
 The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$ The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$
 +
 +=== Osmotic suction model ===
 +
 +TO BE COMPLETED. ​
  
 === Mass conservation of dry air === === Mass conservation of dry air ===
-\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) = 0\]+\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]
  
-=== Gas flows ===+=== Dry air and dissolved gas flows ===
 Starting from Darcy'​s law, the gas velocity is: Starting from Darcy'​s law, the gas velocity is:
 \[ \[
-\vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + \right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right]+\vec{q_g} = - \frac{k_g}{\mu_g}\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y) ​\right]\ \text{où}\ k_g = K_g \frac{\mu_g}{\rho_g g}\left[ m^2\right] 
 +\] 
 + 
 +The diffusion velocity of dry air is proportional to a density gradient. Using the diffusion theory adapted to porous medium, one writes: 
 +\[ 
 +\vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} \omega_a = -\vec{I}_v
 \] \]
 +Where $\omega_a = \rho_a/​\rho_g$ is the dry air mass content inside the gas mix.
  
 === Gas State Equation === === Gas State Equation ===
Line 56: Line 73:
   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]   - Density $\rho_a$ :\\ //​Hypothesis//​ : The air is supposed to be a perfect gas. \[\rho_a (p_a) = \rho_{a,​0}\frac{p_a}{p_{a,​0}} \]
   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$   - Intrinsic Permeability $k_g$: \\ Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ with $k_{g,​effectif} = k_{g, intrinsic}k_{a,​w}$
 +  - Saturation degree $S_g$: \\ Depending on suction $s = p_g - p_w : S_g = f(s) = 1 - S_w$
  
 === Balance Equation of Pollutant === === Balance Equation of Pollutant ===
Line 61: Line 79:
  
 === Pollutant flows === === Pollutant flows ===
-\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^w - D \frac{\partial C_m}{\partial x_i} \]\\ +\[ v_i^p = v_i^{advection} + v_i^{diffusion+dispersion} = C_M v_i^{w/g} - D \frac{\partial C_m}{\partial x_i} \]\\ 
-With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.+With $C_Mand $C_m[-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^{w/g}$ is the water or gas velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.
 ==== Files ==== ==== Files ====
 Prepro: LHYPOFE2.F \\ Prepro: LHYPOFE2.F \\
Line 81: Line 99:
 ^ Line 1 (3I10,​2G10.0) ^^ ^ Line 1 (3I10,​2G10.0) ^^
 |NLAWFEM2|Number of constitutive laws at the subscale| |NLAWFEM2|Number of constitutive laws at the subscale|
-|KFLU|Number of DOF: 1=Pw, 2=Pw+C, 3=Pw+Pg, 4=Pw+C+Pg with C the concentration in pollutant|+|KFLU|Number of DOF at the microscale: 1 = $P_w$, 2 = $P_w+C$, 3 = $P_w+P_g$, 4 = $P_w+C+P_g$ with $Cthe concentration in pollutant|
 |MITER|Maximum number of iterations at the subscale| |MITER|Maximum number of iterations at the subscale|
 |CNORM|Norm for the solver of the subscale| |CNORM|Norm for the solver of the subscale|
-|FACONV|Units of conversion of the RVE (it has a size of 1[-])|+|FACONV|Units of conversion of the RVE (it has a size of 1*FACONV[-])|
  
  
Line 101: Line 119:
 |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$| |RHOA0|Gaz density $(=\rho_{a,​0})\ \left[kg.m^{-3}\right]$|
 |PMGAS|Gas molar mass $[g/mol]$| |PMGAS|Gas molar mass $[g/mol]$|
-|PA0|Initial gas pressure $\left[ Pa\right]$|+|PG0|Initial gas pressure $\left[ Pa\right]$|
 |PHENRY|Henry coefficient| |PHENRY|Henry coefficient|
-^ Line 4 (1I10) ^^ +^ Line 4 (4I10) ^^ 
-|IVAP|= 1 for vapour, = 0 if liquid water only (VAPOUR NOT IMPLEMENTED YET)| +|IVAP|= 1 for vapour, = 0 if liquid water only
-^ Line 5 (3I10) ^^+|IGAS|= 0 for air, =1 for $H_2$, =2 for $N_2$, = 3 for $Ar$, = 4 for $He$, = 5 for $CO_2$, = 6 for $CH_4$| 
 +|IOSMOTIC|= 0 to neglect osmotic suction, = 1 for osmotic suction with Van't Hoff model, = 2 for osmotic suction with Kelvin ​(water activityand Pitzer model| 
 +|IDIFF|= 0 for the pollutant to diffuse through water, = 1 through gas
 +^ Line 5 (4I10) ^^
 |ISR|Retention curve (=53 for Van Genuchten with hysteresis)| |ISR|Retention curve (=53 for Van Genuchten with hysteresis)|
 |IKW|Water relative permeability curve (=7 for Van Genuchten)| |IKW|Water relative permeability curve (=7 for Van Genuchten)|
 |IKA|Gas relative permeability curve (=6 for Van Genuchten)| |IKA|Gas relative permeability curve (=6 for Van Genuchten)|
 +|N_SUBINCR|Number of additional multiplicator for the number of subincrement in the hysteresis model|
 ^ Line 6 (3G10.0)^^ ^ Line 6 (3G10.0)^^
 |CKW1|First parameter of IKW| |CKW1|First parameter of IKW|
Line 162: Line 184:
 |SIG(16)|Advective flow of dissolved gas along $x$ (unused)| |SIG(16)|Advective flow of dissolved gas along $x$ (unused)|
 |SIG(17)|Advective flow of dissolved gas along $y$ (unused)| |SIG(17)|Advective flow of dissolved gas along $y$ (unused)|
-|SIG(18)|Unused+|SIG(18)|Vapour flow along $x$ $(=f_{vx})$
-|SIG(19)|Unused+|SIG(19)|Vapour flow along $y$ $(=f_{vy})$
-|SIG(20)|Unused|+|SIG(20)|Vapour flow stored $(=f_{ve})$|
 |SIG(21)|Unused| |SIG(21)|Unused|
 |SIG(22)|Unused| |SIG(22)|Unused|
Line 176: Line 198:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-10 + 5*(Number of Subscale Nodes)\\ +11 + 5*(Number of Subscale Nodes)\\ 
-/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg+/!\ The state variables vector also contains the following information for each subscale node: $X$$Y$$P_w$$C$$P_g$
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)|Liquid water mass at the RVE| |Q(1)|Liquid water mass at the RVE|
Line 187: Line 209:
 |Q(7)|Homogenised gas relative permeability| |Q(7)|Homogenised gas relative permeability|
 |Q(8)|Homogenised macroscale tortuosity| |Q(8)|Homogenised macroscale tortuosity|
-|Q(9)|Vapour mass at the RVE (unused)+|Q(9)|Vapour mass at the RVE| 
-|Q(10)|Homogenised ​succion+|Q(10)|Homogenised ​total suction $(= p_g - p_w + osmotic)$
-|Q(11 + (i-1)*5)|$X_i$| +|Q(11)|Homogenised osmotic suction $(= osmotic)$| 
-|Q(11 + (i-1)*5 +1)|$Y_i$| +|Q(12 + (i-1)*5)|$X_i$| 
-|Q(11 + (i-1)*5 +2)|$P_{w,​i}$| +|Q(12 + (i-1)*5 +1)|$Y_i$| 
-|Q(11 + (i-1)*5 +3)|$C_i$| +|Q(12 + (i-1)*5 +2)|$P_{w,​i}$| 
-|Q(11 + (i-1)*5 +4)|$P_{g,​i}$|+|Q(12 + (i-1)*5 +3)|$C_i$| 
 +|Q(12 + (i-1)*5 +4)|$P_{g,​i}$|
  
laws/hypofe2.1757506504.txt.gz · Last modified: 2025/09/10 14:15 by arthur