User Tools

Site Tools


laws:hypofe2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hypofe2 [2023/11/24 10:20]
arthur [Number of state variables]
laws:hypofe2 [2023/11/29 13:51] (current)
arthur [The model]
Line 1: Line 1:
-====== HYPOFE2 ​**(WIP)**======+====== HYPOFE2 ======
 ===== Description ===== ===== Description =====
 Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC. Multiscale law for water-air seepage, pollutant diffusion and advection. Inspired from WAVAT and ADVEC.
Line 25: Line 25:
   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$   - Intrinsic Permeability $k_w$: \\ Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ with $k_{w,eff} = k_f k_{r,w}$
   - Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$   - Saturation degree $S_w$: \\ Depending on succion $s = p_a - p_w : S_w = f(s)$
 +
 +=== Saturation degree equation (with FKRSAT) ===
 +ISR = 53 Van Genuchten model (ISR=5) with hysteresis implemented.
 +
 +The main water retention curves (d=drying, w=wetting) are, according to the Van Genuchten model:
 +\[S_{ed} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_d}\right)^{n_d}\right]^{-m_d}\] ​
 +\[S_{ew} = S_{res} + (S_{max}-S_{res}) \left[1 + \left(\frac{s}{a_w}\right)^{n_w}\right]^{-m_w}\]
 +
 +The hysteresis is then defined by:
 +\[\frac{\partial S_{es}}{\partial s} (\text{wetting}) = \left(\frac{s_w}{s}\right)^b\left(\frac{\partial S_{ew}}{\partial s}\right) \text{ with } s_w = a_w \left(S_e^{-1/​m_w}\right)^{1/​n_w}\] ​
 +\[\frac{\partial S_{es}}{\partial s} (\text{drying}) = \left(\frac{s_d}{s}\right)^{-b}\left(\frac{\partial S_{ed}}{\partial s}\right) \text{ with } s_d = a_d \left(S_e^{-1/​m_d}\right)^{1/​n_d}\]
 +
 +And therefore:
 +\[S_e^{t+1} = S_e^t + \left(\frac{\partial S_{es}}{\partial s}\right)\times ds\]
 +
 +The ISR=53 parameters are: CSRW1=$a_d$,​ CSRW2=$n_d$,​ CSRW3=$a_w$,​ CSRW4=$n_w$ and CSRW5=$b$
  
 === Mass conservation of dry air === === Mass conservation of dry air ===
Line 47: Line 63:
 With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient. With C_M and C_m [-] the concentration in pollutant at the macroscale and subscale, respectively. $v_i^w$ is the water velocity obtained from Darcy'​s law and $D$ [m$^2$/s] is the diffusion and dispersion coefficient.
 ==== Files ==== ==== Files ====
-Prepro: LHYPOFE2.F & EHYPOFE2A.F\\ +Prepro: LHYPOFE2.F \\ 
-Lagamine: HYPOFE2.F & EHYPOFE2B.F\\+Lagamine: HYPOFE2.F \\
 ===== Availability ===== ===== Availability =====
 |Plane stress state| NO | |Plane stress state| NO |
Line 138: Line 154:
 |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,​a}+f_{py,​b})/​2)$| |SIG(9)|Homogenised mean flow of the pollutant along $y$ $(=(f_{py,​a}+f_{py,​b})/​2)$|
 |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$| |SIG(10)|Homogenised pollutant flow stored (takes advection into account) $(=f_{pe})$|
-|SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,​b})| +|SIG(11)|Homogenised diffusive flow of the pollutant along $x$ for the current step $(=f_{px,​b})$
-|SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,​b})|+|SIG(12)|Homogenised diffusive flow of the pollutant along $y$ for the current step $(=f_{py,​b})$|
 |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$| |SIG(13)|Homogenised gas flow along $x$ $(=f_{gx})$|
 |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$| |SIG(14)|Homogenised gas flow along $y$ $(=f_{gy})$|
laws/hypofe2.1700817631.txt.gz · Last modified: 2023/11/24 10:20 by arthur