Table of Contents

HMIC

Description

2D hydraulic microscopic law for solid elements.
Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).

The law definition and typical values of parameters for clays can be found in Corman (2024)1).

The model

This law replaces the macroscopic fluid law, by considering a complete hydraulic microstructure, made of dominant horizontal bedding planes, vertical bridging planes and matrix blocks. Under the assumption of the spatial repeticion of the microstructure over the distance $w$, a Representative Element Volume (REV) is built, including fractures and tubes whose behaviours are governed by constitutive laws. Fluid pressures and fluxes are computed at the microscopic scale in that hydraulic network. This way, the law is used for water seepage, air seepage, diffusion and advection (coupled) under non-linear analysis in 2D porous media. Effects of mechanics on the flow are implicitely integrated into the microscale model by means of hydro-mechanical couplings.

Mass balance equation for water

\[ \underbrace{\frac{\partial}{\partial t} (\rho_s . n . S_{r,w}) + div(\rho_w \vec{q_l})}_{\text{Liquid water}} = 0 \]

Liquid water flow

From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube: \[ \vec{q_l} = - \frac{k_{r_w}}{\mu_w}\frac{1}{A}\kappa\left[ \vec{grad}(p_w) + g \rho_w \vec{grad}(y)\right]\] where
\[ \kappa = {} \begin{cases} -\frac{h_b^2}{12}h_b \cdot w, fracture\\ -\pi \frac{D^4}{128}, tube\\ \end{cases} \] \[ k_{r_w} = \begin{cases} \frac{S_{r}^{*^2}}{2}(3-S_{r}^{*}), fracture\\ S_{r}^{*^2}, tube \end{cases} \]

Liquid state equations

  1. Density $\rho_w$: \[\rho_w (T, p_w) = \rho_{wo}\left[ 1+\frac{p_w-p_{w0}}{\chi_w} \right]\]
  2. Intrinsic permeability $k_w$:
    Depending on the water saturation degree $S_w$ : $k_{r,w} = f(S_w)$ avec $k_{w,eff} = k_f k_{r,w}$
  3. Saturation degree $S_w$:
    Depending on succion $s = p_a - p_w : S_w = f(s)$

Mass balance equation for air

\[\frac{\partial}{\partial t} (\rho_a . n . S_{r,g}) + div(\rho_a \vec{q_g}) + div(\vec{i_a}) = 0\]

Dry air flow

From Darcy's law, the advective component of the liquid water flow respectively reads for a fracture and a tube: \[ \vec{q_g} = - \frac{k_{r_g}}{\mu_g}\frac{1}{A}\kappa\left[ \vec{grad}(p_g) + g \rho_g \vec{grad}(y)\right]\] where
\[ \kappa = {} \begin{cases} -\frac{h_b^2}{12}h_b \cdot w, fracture\\ -\pi \frac{D^4}{128}, tube\\ \end{cases} \] \[ k_{r_g} = \begin{cases} (1-S_{r}^*)^3, fracture\\ (1-S_{r}^*)^2, tube \end{cases} \]

From Fick's law, the diffusive component of the dissolved air flow respectively reads for a fracture and a tube: \[ \vec{i}_a = - n S_{r,g} \tau D \rho_g \vec{grad} (\omega_a) \]

where $\omega_a = \rho_a/\rho_g$.

Dry gas state equations

  1. Density $\rho_a$ :
    Assumption of classical ideal gas equation of state: \[\rho_a (T, p_a) = \rho_{a,0}\frac{p_a}{p_{a,0}}\frac{T_0}{T} \]
  2. Perméabilité intrinsèque $k_g$:
    Depending on the saturation degree $S_g$ : $k_{r,g} = f(S_g)$ avec $k_{g,effectif} = k_{g, intrinsic}k_{a,w}$
  3. Gaseous saturation degree $S_g$:
    Depending on suction $s = p_g - p_w$
    $S_g = 1-S_w$

Files

Prepro: LHMIC.F & EHMICA.F
Lagamine: HMIC.F & EHMICB.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 628
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (4I10)
NLAWFEM2Number of constitutive laws at the sub-scale
KFLUNumber of DOF: 1=Pw, 2=Pw+Pg
IGASType of gas: 0=Air, 1=H2, 2=N2, 3=Ar, 4=He, 5=CO2, 6=CH4
IDIFFActivation of diffusion mechanism: 0=No, 1=Yes,
Line 2 (1G10.0)
FACONVUnits of conversion of the REV (it has a size of 1 [-])

Real parameters

Line 1 (5G10.0)
VISCW0Liquid dynamic viscosity $(=\mu_{w,0})\ \left[ Pa.s \right]$
RHOW0Liquid density $(=\rho_{w,0})\ \left[ kg.m^{-3}\right]$
UXHIWLiquid compressibility coefficient $(=1/ \chi_{w})\ \left[ Pa^{-1}\right]$
PW0Initial water pressure $\left[ Pa\right]$
T0Initial temperature $\left[ K\right]$
Line 2 (3E10.2,2G10.0)
VISCA0Gas dynamic viscosity $(=\mu_{a,0})\ \left[Pa.s \right]$
RHOA0Gaz density $(=\rho_{a,0})\ \left[kg.m^{-3}\right]$
PMGASGas molar mass $[g/mol]$
PA0Initial gas pressure $\left[ Pa\right]$
PHENRYHenry coefficient $\left[ -\right]$

Sub-scale parameters

To be repeated as many time as NLAWFEM2.

Line 1 (7I5)
ILAW2No. of the sub-scale constitutive law (=1:NLAWFEM2)
ITYPE2Type of sub-scale law: 1=Fracture (manual), 2=Fracture (automatic), 3=Tube (manual), 4=Tube (automatic), 5=Bridge (manual), 6=Bridge (automatic)
ISRRetention curve: 1=Brooks-Corey for fracture, 2=Brooks-Corey for tube, 3=van Genuchten for fracture, 4=van Genuchten for tube
IKWWater relative permeability curve
IKAGas relative permeability curve
INUMEL2Number of micro-elements with this law
ICONSTConstant element opening: 0=No, 1=Yes
Line 2 - Retention curve coefficients (4G10.0)
PE0Initial air entry pressure of the micro-element
CDFExponent parameter
SRESResidual saturation degree $(=S_{res})$
SRG0Initial gas saturation
AKRMINMinimum value of relative permeability
SRFIELDField saturation degree $(=S_{r, field})$
CDF2Exponent parameter
CSR88th parameter of ISR
Line 3 - Fracture law coefficients (4G10.0)
AKPStiffness parameter of the material
GAMMAExponent parameter
DINIInitial aperture
DMAXMaximum aperture
Line 3 - Tube law coefficients (3G10.0)
DINIInitial aperture
DMAXMaximum aperture
TORTTortuosity

Stresses

Number of stresses

28

Meaning

In 2D state :

SIG(1)$\sigma_x$ (unused)
SIG(2)$\sigma_y$ (unused)
SIG(3)$\sigma_{xy}$ (unused)
SIG(4)$\sigma_z$ (unused)
SIG(5)Homogenised liquid flow along $x$ $(=f_{wx})$
SIG(6)Homogenised liquid flow along $y$ $(=f_{wy})$
SIG(7)Homogenised liquid flow stored $(=f_{we})$
SIG(8)Homogenised gas flow along $x$ $(=f_{ax})$gas advection +
gas diffusion +
dissolved gas advection +
dissolved gas diffusion
SIG(9)Homogenised gas flow along $y$ $(=f_{ay})$
SIG(10)Homogenised gas flow stored $(=f_{ae})$
SIG(11)Advection dissolved gas flow along $x$ $(=f_{ad,x})$
SIG(12)Advection dissolved gas flow along $y$ $(=f_{ad,y})$
SIG(13)Diffusion dissolved gas flow along $x$ $(=f_{add,x})$
SIG(14)Diffusion dissolved gas flow along $y$ $(=f_{add,y})$
SIG(15)Advection gaseous gas flux along $x$ $(=f_{ag,x})$
SIG(16)Advection gaseous gas flux along $y$ $(=f_{ag,y})$
SIG(18)Unused
SIG(18)Unused
SIG(19)Unused
SIG(20)Unused
SIG(21)Unused
SIG(22)Unused
SIG(23)Unused
SIG(24)Unused
SIG(25)Unused
SIG(26)Unused
SIG(27)Unused
SIG(28)Unused

State variables

Number of state variables

=6 in 2D cases

List of state variables

Q(1)Unused
Q(2)Unused
Q(3)Homogenised macro-scale porosity
Q(4)Homogenised macro-scale saturation
Q(5)Water storage
Q(6)Gas storage
Q(7)Saved fracture aperture of the current step (from 7 to 7+nico)
Q(8)Unused
Q(9)Unused
Q(10)Unused
Q(11)Unused
Q(12)Unused
1)
Corman, G. (2024). Hydro-mechanical modelling of gas transport processes in clay host rocks in the context of a nuclear waste repository. PhD thesis, University of Liège. https://hdl.handle.net/2268/307996