User Tools

Site Tools


laws:hmic

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:hmic [2023/11/24 13:43]
gilles [Real parameters]
laws:hmic [2023/12/12 16:03] (current)
gilles [Description]
Line 2: Line 2:
 ===== Description ===== ===== Description =====
 2D hydraulic microscopic law for solid elements.\\ 2D hydraulic microscopic law for solid elements.\\
-Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).+Can be parallelised in ELEMB (at the macro-scale) or in the perturbation loop (at the micro-scale).\\ \\ 
 + 
 +The law definition and typical values of parameters for clays can be found in Corman (2024)((Corman,​ G. (2024). Hydro-mechanical modelling of gas transport processes in clay host rocks in the context of a nuclear waste repository. PhD thesis, University of Liège. https://​hdl.handle.net/​2268/​307996)).
  
  
Line 121: Line 123:
 |PHENRY|Henry coefficient $\left[ -\right]$| |PHENRY|Henry coefficient $\left[ -\right]$|
  
-==== Subscale ​parameters ====+==== Sub-scale ​parameters ====
 To be repeated as many time as NLAWFEM2. To be repeated as many time as NLAWFEM2.
-^ Line 1 (2I5) ^^ +^ Line 1 (7I5) ^^ 
-|ILAW2|Number ​of the subscale ​constitutive law (=1:​NLAWFEM2)| +|ILAW2|No. of the sub-scale ​constitutive law (=1:​NLAWFEM2)| 
-|ITYPE2|Type of subscale ​law (=1 for Hydraulic pollutant microscale ​law)+|ITYPE2|Type of sub-scale ​law: 1=Fracture ​(manual), 2=Fracture (automatic),​ 3=Tube (manual), 4=Tube (automatic),​ 5=Bridge (manual), 6=Bridge (automatic)| 
-^ Line 2 (4G10.0) ^^ +|ISR|Retention curve: ​1=Brooks-Corey ​for fracture, 2=Brooks-Corey for tube, 3=van Genuchten for fracture, 4=van Genuchten for tube| 
-|POROS|Material porosity ($=n$)| +|IKW|Water relative permeability curve | 
-|PERMINT|Material intrinsic ​permeability ​($=k_{int}$$[m^2]$| +|IKA|Gas relative permeability curve| 
-|DIFFC|Material diffusion coefficient ​of the pollutant ​($D_{app}$$[m^2/s]$+|INUMEL2|Number of micro-elements with this law
-|TORTU|Material tortuosity ​($=\tau$)|+|ICONST|Constant element opening: 0=No, 1=Yes
 +^ Line 2 - Retention curve coefficients ​(4G10.0) ^^ 
 +|PE0|Initial air entry pressure of the micro-element| 
 +|CDF|Exponent parameter| 
 +|SRES|Residual saturation degree ​$(=S_{res})$
 +|SRG0|Initial gas saturation| 
 +|AKRMIN|Minimum value of relative ​permeability
 +|SRFIELD|Field saturation degree ​$(=S_{r, field})$| 
 +|CDF2|Exponent parameter| 
 +|CSR8|8th parameter ​of ISR| 
 +^ Line 3 - Fracture law coefficients ​(4G10.0) ^
 +|AKP|Stiffness parameter of the material
 +|GAMMA|Exponent parameter| 
 +|DINI|Initial aperture| 
 +|DMAX|Maximum aperture| 
 +^ Line 3 - Tube law coefficients ​(3G10.0^^ 
 +|DINI|Initial aperture| 
 +|DMAX|Maximum aperture| 
 +|TORT|Tortuosity|
  
 ===== Stresses ===== ===== Stresses =====
Line 144: Line 164:
 |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$| |SIG(6)|Homogenised liquid flow along $y$ $(=f_{wy})$|
 |SIG(7)|Homogenised liquid flow stored $(=f_{we})$| |SIG(7)|Homogenised liquid flow stored $(=f_{we})$|
-|SIG(8)|Homogenised ​mean flow of the pollutant ​along $x$ $(=(f_{px,​a}+f_{px,​b})/2)$| +|SIG(8)|Homogenised ​gas flow along $x$ $(=f_{ax})$|gas advection + \\ gas diffusion + \\ dissolved gas advection + \\ dissolved gas diffusion
-|SIG(9)|Homogenised ​mean flow of the pollutant ​along $y$ $(=(f_{py,a}+f_{py,​b})/​2)$| +|SIG(9)|Homogenised ​gas flow along $y$ $(=f_{ay})$|:::
-|SIG(10)|Homogenised ​pollutant ​flow stored ​(takes advection into account) ​$(=f_{pe})$| +|SIG(10)|Homogenised ​gas flow stored $(=f_{ae})$|:::
-|SIG(11)|Homogenised diffusive ​flow of the pollutant ​along $x$ for the current step $(=f_{px,b})$| +|SIG(11)|Advection dissolved gas flow along $x$ $(=f_{ad,x})$| 
-|SIG(12)|Homogenised diffusive ​flow of the pollutant ​along $y$ for the current step $(=f_{py,b})$| +|SIG(12)|Advection dissolved gas flow along $y$ $(=f_{ad,y})$| 
-|SIG(13)|Homogenised ​gas flow along $x$ $(=f_{gx})$| +|SIG(13)|Diffusion dissolved ​gas flow along $x$ $(=f_{add,x})$| 
-|SIG(14)|Homogenised ​gas flow along $y$ $(=f_{gy})$| +|SIG(14)|Diffusion dissolved ​gas flow along $y$ $(=f_{add,y})$| 
-|SIG(15)|Homogenised ​gas flow stored ​$(=f_{ge})$| +|SIG(15)|Advection gaseous ​gas flux along $x$ $(=f_{ag,x})$| 
-|SIG(16)|Advective flow of dissolved ​gas along $x$ (unused)| +|SIG(16)|Advection gaseous ​gas flux along $y$ $(=f_{ag,y})$
-|SIG(17)|Advective flow of dissolved gas along $y$ (unused)|+|SIG(18)|Unused|
 |SIG(18)|Unused| |SIG(18)|Unused|
 |SIG(19)|Unused| |SIG(19)|Unused|
Line 168: Line 188:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-10 + 5*(Number of Subscale Nodes)\\ +=6 in 2D cases
-/!\ The state variables vector also contains the following information for each subscale node: X,Y,Pw,C,Pg+
 ==== List of state variables ==== ==== List of state variables ====
-|Q(1)|Liquid water mass at the RVE+|Q(1)|Unused
-|Q(2)|Pollutant mass at the RVE+|Q(2)|Unused
-|Q(3)|Gaseous air mass at the RVE+|Q(3)|Homogenised macro-scale porosity
-|Q(4)|Homogenised ​macroscale porosity+|Q(4)|Homogenised ​macro-scale saturation
-|Q(5)|Water ​saturation degree+|Q(5)|Water ​storage
-|Q(6)|Homogenised water relative permeability+|Q(6)|Gas storage
-|Q(7)|Homogenised gas relative permeability+|Q(7)|Saved fracture aperture of the current step (from 7 to 7+nico)
-|Q(8)|Homogenised macroscale tortuosity+|Q(8)|Unused
-|Q(9)|Vapour mass at the RVE (unused)+|Q(9)|Unused
-|Q(10)|Homogenised succion+|Q(10)|Unused
-|Q(11 + (i-1)*5)|$X_i$+|Q(11)|Unused
-|Q(11 + (i-1)*5 +1)|$Y_i$| +|Q(12)|Unused|
-|Q(11 + (i-1)*5 +2)|$P_{w,​i}$| +
-|Q(11 + (i-1)*5 +3)|$C_i$| +
-|Q(11 + (i-1)*5 +4)|$P_{g,i}$|+
  
laws/hmic.1700829786.txt.gz · Last modified: 2023/11/24 13:43 by gilles