Table of Contents

HILL3D

Description

Anisotropic elasto-plastic law based on HILL48 yield locus for solid elements at constant temperature.

The model

Mechanical analysis of elasto-plastic anisotropic solids undergoing large strains. Isotropic hardening is assumed.

Files

Prepro: LHIL3D.F
Lagamine: HILL3D.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 65
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (5I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step
NINTEPS Number of sub-intervals per unit of delta epsilon
$\Rightarrow$ number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON)
IKAP 0 = Analytical compliance matrix
1 = Perturbation compliance matrix
MAXITMaximum number of iterations during stress integration
NTYPHP Type of hardening law (see Hardening form)

Real parameters

Line 1 (6G10.0)
$E_{1}$YOUNG's orthotropic elastic moduli
$E_{2}$YOUNG's orthotropic elastic moduli
$E_{3}$YOUNG's orthotropic elastic moduli
$\mbox{ANU}_{12}$Orthotropic POISSON's ratios
$\mbox{ANU}_{13}$Orthotropic POISSON's ratios
$\mbox{ANU}_{23}$Orthotropic POISSON's ratios
Line 2 (3G10.0)
$G_{12} COULOMB's orthotropic elastic moduli
$G_{13} COULOMB's orthotropic elastic moduli
$G_{23} COULOMB's orthotropic elastic moduli

The inverse of the orthotropic elastic matrix is defined: $$ \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22}\\ \varepsilon_{33}\\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}$$

Line 3 (6G10.0)
FHill’s coefficients defining the yield locus
G Hill’s coefficients defining the yield locus
H Hill’s coefficients defining the yield locus
N Hill’s coefficients defining the yield locus
L Hill’s coefficients defining the yield locus
M Hill’s coefficients defining the yield locus

The yield locus is defined:
$f = \frac{1}{2} \underline{\sigma}^{T} \underline{\underline{H}} \ \underline{\sigma} - \sigma_{F}^{2} = 0 $
with

$\underline{\underline{H}} = \begin{pmatrix} G+H &-H&-G&0&0&0\\-H&H+F&-F&0&0&0\\-G&-F&F+G&0&0&0\\0&0&0&2N&0&0\\0&0&0&0&2L&0\\0&0&0&0&0&2M\\ \end{pmatrix}$
The 6 parameters of this matrix can be computed:
$\rightarrow$ from the yield stress limits :

$\sigma_{XX}^{yield} = \sigma_{F}^{initial} =$ initial value of $\sigma_{F}$ (see Hardening form)
$\sigma_{YY}^{yield} = \sqrt{\frac{2}{H+F}}\sigma_{F}^{initial}$
$\sigma_{ZZ}^{yield} = \sqrt{\frac{2}{G+F}}\sigma_{F}^{initial}$
$\sigma_{XY}^{yield} = \sqrt{\frac{1}{N}}\sigma_{F}^{initial}$
$\sigma_{XZ}^{yield} = \sqrt{\frac{1}{L}}\sigma_{F}^{initial}$
$\sigma_{YZ}^{yield} = \sqrt{\frac{1}{M}}\sigma_{F}^{initial}$
with the additional condition:
$H + G = 2$
$\rightarrow$ for sheet metal fitting, it is more convenient to perform 3 tensile tests and use the following fitting through the Lankford coefficients:
$r_{0} = \frac{H}{G}$; $r_{90} = \frac{H}{F}$; $r_{45} = \frac{2N-F-G}{2(F+G)}$
with these additional conditions :
$H + G = 2$; $N=L=M$
And $\sigma_{F}$ is computed as above
$\rightarrow$ The 3 conditions to compute $N$, $L$ and $M$ with the yield stress limits can be replaced by the following using the tensile test along the $45^{\circ}$ direction:
$\sigma_{45^{\circ}}^{yield} = \sqrt{\frac{8}{G+F+2N}} \sigma_{F}^{initial}$ with the additional conditions $N=L=M$
It should be noticed that these 3 fittings cannot generally be fulfilled simultaneously. Indeed, each one gives enough equations to compute all the Hill coefficients.
However, for an isotropic material, the Von Mises criterion is obtained. The condition on the Lankford coefficients gives:
\[\left. \begin{array}{lll} r_{0} = 1\\ r_{90} = 1\\ r_{45} = 1 \end{array} \right\} H=G=F=1; N=L=M=3\] And the condition on the yield stresses gives :

\[\left. \begin{array}{ll} \sigma_{YY}^{yield} = \sigma_{ZZ}^{yield} = \sigma_{XX}^{yield} \\ \sigma_{45^{\circ} }^{yield} = \sigma_{XX}^{yield}\\ \end{array} \right\} H=G=F=1; N=L=M=3\]

Line 1 (3G10.0)
CK hardening factor K (see Hardening form)
CW hardening coefficient W0 (see Hardening form)
CN hardening exponent n (see Hardening form)

Stresses

Number of stresses

6

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{ZZ}$
SIG(4)$\sigma_{XY}$
SIG(5)$\sigma_{XZ}$
SIG(6)$\sigma_{YZ}$

State variables

Number of state variables

8+…

List of state variables

Q(1) Yield criterion
= 0 : the previous step was elastic
= 1: the previous step was elasto-plastic
Q(2) Accumulated plastic work ($W^{pl}$)
Q(3)$\rightarrow$ Q(5) Coordinates (x,y,z) of the first local axe
Q(6) $ \rightarrow$ Q(8) Coordinates (x,y,z) of the second local axe

Hardening form

Note that in the code, only the first formulation is used and a conversion is managed if NTYPHP = 1.